Advertisement

Heterologous production of a new lasso peptide brevunsin in Sphingomonas subterranea

  • Shinya Kodani
  • Hikaru Hemmi
  • Yuto Miyake
  • Issara Kaweewan
  • Hiroyuki Nakagawa
Natural Products - Original Paper
  • 190 Downloads

Abstract

A shuttle vector pHSG396Sp was constructed to perform gene expression using Sphingomonas subterranea as a host. A new lasso peptide biosynthetic gene cluster, derived from Brevundimonas diminuta, was amplified by PCR and integrated to afford a expression vector pHSG396Sp-12697L. The new lasso peptide brevunsin was successfully produced by S. subterranea, harboring the expression vector, with a high production yield (10.2 mg from 1 L culture). The chemical structure of brevunsin was established by NMR and MS/MS experiments. Based on the information obtained from the NOE experiment, the three-dimensional structure of brevunsin was determined, which indicated that brevunsin possessed a typical lasso structure. This expression vector system provides a new heterologous production method for unexplored lasso peptides that are encoded by bacterial genomes.

Keywords

Lasso peptide Heterologous production Sphingomonas subterranea Brevundimonas diminuta NMR 

Notes

Acknowledgements

This study was supported by the Japan Society for the Promotion of Science by Grants-in-aids (Grant number 16K01913). We thank Ms. Tomoko Sato for measurement of MS/MS data.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10295_2018_2077_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5521 kb)

References

  1. 1.
    Allen CD, Chen MY, Trick AY, Le DT, Ferguson AL, Link AJ (2016) Thermal unthreading of the lasso peptides astexin-2 and astexin-3. ACS Chem Biol 11:3043–3051.  https://doi.org/10.1021/acschembio.6b00588 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brunger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921CrossRefGoogle Scholar
  3. 3.
    Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol 24:591–598.  https://doi.org/10.1016/j.copbio.2013.02.026 CrossRefPubMedGoogle Scholar
  4. 4.
    Clore GM, Gronenborn AM, Nilges M, Ryan CA (1987) Three-dimensional structure of potato carboxypeptidase inhibitor in solution. A study using nuclear magnetic resonance, distance geometry, and restrained molecular dynamics. Biochemistry 26:8012–8023CrossRefGoogle Scholar
  5. 5.
    Clubb RT, Ferguson SB, Walsh CT, Wagner G (1994) Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33:2761–2772CrossRefGoogle Scholar
  6. 6.
    Gross E, Witkop B (1962) Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem 237:1856–1860PubMedGoogle Scholar
  7. 7.
    Harada KI, Fujii K, Hayashi K, Suzuki M, Ikai Y, Oka H (1996) Application of D, L-FDLA derivatization to determination of absolute configuration of constituent amino acids in peptide by advanced Marfey’s method. Tetrahedron Lett 37:3001–3004.  https://doi.org/10.1016/0040-4039(96)00484-4 CrossRefGoogle Scholar
  8. 8.
    Hayashi H, Kurusu Y (2014) Analysis of a DNA region from low-copy-number plasmid pYAN-1 of Sphingobium yanoikuyae responsible for plasmid stability. Biosci Biotechnol Biochem 78:510–515.  https://doi.org/10.1080/09168451.2014.890029 CrossRefPubMedGoogle Scholar
  9. 9.
    Hayashi H, Kurusu Y (2014) DNA regions responsible for maintenance of Shingobium plasmid pYAN-2. Microbes Environ 29:96–99CrossRefGoogle Scholar
  10. 10.
    Hegemann JD, De Simone M, Zimmermann M et al (2014) Rational improvement of the affinity and selectivity of integrin binding of grafted lasso peptides. J Med Chem 57:5829–5834.  https://doi.org/10.1021/jm5004478 CrossRefPubMedGoogle Scholar
  11. 11.
    Hegemann JD, Fage CD, Zhu S, Harms K, Di Leva FS, Novellino E, Marinelli L, Marahiel MA (2016) The ring residue proline 8 is crucial for the thermal stability of the lasso peptide caulosegnin II. Mol BioSyst 12:1106–1109.  https://doi.org/10.1039/c6mb00081a CrossRefPubMedGoogle Scholar
  12. 12.
    Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013) Caulosegnins I-III: a highly diverse group of lasso peptides derived from a single biosynthetic gene cluster. J Am Chem Soc 135:210–222.  https://doi.org/10.1021/ja308173b CrossRefPubMedGoogle Scholar
  13. 13.
    Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48:1909–1919.  https://doi.org/10.1021/acs.accounts.5b00156 CrossRefPubMedGoogle Scholar
  14. 14.
    Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013) Lasso peptides from proteobacteria: genome mining employing heterologous expression and mass spectrometry. Biopolymers 100:527–542.  https://doi.org/10.1002/bip.22326 CrossRefPubMedGoogle Scholar
  15. 15.
    Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-residue macrolactam ring. Angew Chem Int Ed Engl 53:2230–2234.  https://doi.org/10.1002/anie.201309267 CrossRefPubMedGoogle Scholar
  16. 16.
    Imbert M, Blondeau R (1999) Effect of light on germinating spores of Streptomyces viridosporus. FEMS Microbiol Lett 181:159–163CrossRefGoogle Scholar
  17. 17.
    Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006) Lariatins, antimycobacterial peptides produced by Rhodococcus sp. K01-B0171, have a lasso structure. J Am Chem Soc 128:7486–7491.  https://doi.org/10.1021/ja056780z CrossRefPubMedGoogle Scholar
  18. 18.
    Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2013) Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol 79:6795–6802.  https://doi.org/10.1128/aem.02296-13 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2014) Synthetic vanillate-regulated promoter for graded gene expression in Sphingomonas. Sci Rep 4:6453.  https://doi.org/10.1038/srep06453 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat Chem Biol 7:794–802.  https://doi.org/10.1038/nchembio.684 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation and structural characterization of capistruin, a lasso peptide predicted from the genome sequence of Burkholderia thailandensis E264. J Am Chem Soc 130:11446–11454.  https://doi.org/10.1021/ja802966g CrossRefPubMedGoogle Scholar
  22. 22.
    Kodani S, Inoue Y, Suzuki M, Dohra H, Suzuki T, Hemmi H, Ohnishi-Kameyama M (2017) Sphaericin, a lasso peptide from the rare actinomycete Planomonospora sphaerica. Eur J Org Chem 2017:1177–1183.  https://doi.org/10.1002/ejoc.201601334 CrossRefGoogle Scholar
  23. 23.
    Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(51–55):29–32Google Scholar
  24. 24.
    Kuroha M, Hemmi H, Ohnishi-Kameyama M, Kodani S (2017) Isolation and structure determination of a new lasso peptide subterisin from Sphingomonas subterranea. Tetrahedron Lett 58:3429–3432.  https://doi.org/10.1016/j.tetlet.2017.07.064 CrossRefGoogle Scholar
  25. 25.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486CrossRefGoogle Scholar
  26. 26.
    Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genom 15:983.  https://doi.org/10.1186/1471-2164-15-983 CrossRefGoogle Scholar
  27. 27.
    Li Y, Zirah S, Rebuffat S (2015) Lasso peptides: bacterial strategies to make and maintain bioactive entangled scaffolds. Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
  28. 28.
    Link AJ (2015) Biosynthesis: leading the way to RiPPs. Nat Chem Biol 11:551–552.  https://doi.org/10.1038/nchembio.1862 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind Microbiol Biotechnol 41:333–344.  https://doi.org/10.1007/s10295-013-1357-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006.  https://doi.org/10.1039/c2np20070h CrossRefPubMedGoogle Scholar
  31. 31.
    Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining approach for lasso peptide discovery. Proc Natl Acad Sci USA 109:15223–15228.  https://doi.org/10.1073/pnas.1208978109 CrossRefPubMedGoogle Scholar
  32. 32.
    Martin-Gomez H, Tulla-Puche J (2018) Lasso peptides: chemical approaches and structural elucidation. Org Biomol Chem.  https://doi.org/10.1039/c8ob01304g CrossRefPubMedGoogle Scholar
  33. 33.
    Metelev M, Tietz JI, Melby JO, Blair PM, Zhu L, Livnat I, Severinov K, Mitchell DA (2015) Structure, bioactivity, and resistance mechanism of streptomonomicin, an unusual lasso Peptide from an understudied halophilic actinomycete. Chem Biol 22:241–250.  https://doi.org/10.1016/j.chembiol.2014.11.017 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Salomon RA, Farias RN (1992) Microcin 25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428–7435CrossRefGoogle Scholar
  35. 35.
    Sardar D, Schmidt EW (2016) Combinatorial biosynthesis of RiPPs: docking with marine life. Curr Opin Chem Biol 31:15–21.  https://doi.org/10.1016/j.cbpa.2015.11.016 CrossRefPubMedGoogle Scholar
  36. 36.
    Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of plasmid determinants for microcin J25 production and immunity. J Bacteriol 178:3661–3663CrossRefGoogle Scholar
  37. 37.
    Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA (2017) A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol.  https://doi.org/10.1038/nchembio.2319 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wuthrich K, Billeter M, Braun W (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol 169:949–961CrossRefGoogle Scholar
  39. 39.
    Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2013) The astexin-1 lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20:558–569.  https://doi.org/10.1016/j.chembiol.2013.03.013 CrossRefPubMedGoogle Scholar
  40. 40.
    Zong C, Wu MJ, Qin JZ, Link AJ (2017) Lasso peptide benenodin-1 is a thermally actuated [1] rotaxane switch. J Am Chem Soc 139:10403–10409.  https://doi.org/10.1021/jacs.7b04830 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.College of AgricultureAcademic Institute, Shizuoka UniversityShizuokaJapan
  2. 2.Graduate School of Integrated Science and TechnologyShizuoka UniversityShizuokaJapan
  3. 3.Graduate School of Science and TechnologyShizuoka UniversityShizuokaJapan
  4. 4.Food Research Institute, National Agriculture and Food Research Organization (NARO)IbarakiJapan
  5. 5.Advanced Analysis CenterNational Agriculture and Food Research Organization (NARO)IbarakiJapan

Personalised recommendations