Journal of Industrial Microbiology & Biotechnology

, Volume 45, Issue 11, pp 993–1002 | Cite as

Improvement of butanol production in Clostridium acetobutylicum through enhancement of NAD(P)H availability

  • Feng Qi
  • Chandresh Thakker
  • Fayin Zhu
  • Matthew Pena
  • Ka-Yiu San
  • George N. BennettEmail author
Bioenergy/Biofuels/Biochemicals - Original Paper


Clostridium acetobutylicum is a natural producer of butanol, butyrate, acetone and ethanol. The pattern of metabolites reflects the partitioning of redox equivalents between hydrogen and carbon metabolites. Here the exogenous genes of ferredoxin-NAD(P)+ oxidoreductase (FdNR) and trans-enoyl-coenzyme reductase (TER) are introduced to three different Clostridium acetobutylicum strains to investigate the distribution of redox equivalents and butanol productivity. The FdNR improves NAD(P)H availability by capturing reducing power from ferredoxin. A butanol production of 9.01 g/L (36.9% higher than the control), and the highest ratios of butanol/acetate (7.02) and C4/C2 (3.17) derived metabolites were obtained in the C acetobutylicum buk- strain expressing FdNR. While the TER functions as an NAD(P)H oxidase, butanol production was decreased in the C. acetobutylicum strains containing TER. The results illustrate that metabolic flux can be significantly changed and directed into butanol or butyrate due to enhancement of NAD(P)H availability by controlling electron flow through the ferredoxin node.


Clostridium acetobutylicum NAD(P)H Redox FdNR Ferredoxin TER 



The work was supported by Department of Energy Grant DE-SC0014462 and Natural Science Foundation of Fujian Province of China (No. 2016J01148; 2016J01147). Some preliminary experiments were supported by Army Research Office, grant number W911NF0910119.

Compliance with ethical standard

Conflict of interest

All the authors declare that he/she has no conflict of interest.

Supplementary material

10295_2018_2068_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 108 kb)


  1. 1.
    Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311CrossRefGoogle Scholar
  2. 2.
    Balzer GJ, Thakker C, Bennett GN, San KY (2013) Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Metab Eng 20:1–8CrossRefGoogle Scholar
  3. 3.
    Bannam TL, Rood JI (1993) Clostridium perfringens-Escherichia coli shuttle vectors that carry single antibiotic resistance determinants. Plasmid 29:233–235CrossRefGoogle Scholar
  4. 4.
    Bennett GN, Rudolph FB (1995) The central metabolic pathway from acetyl-CoA to butyryl-CoA in Clostridium acetobutylicum. FEMS Microbiol Rev 17:241–249CrossRefGoogle Scholar
  5. 5.
    Berríos-Rivera SJ, Bennett GN, San KY (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Metab Eng 4:217–229CrossRefGoogle Scholar
  6. 6.
    Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels 12(8):20CrossRefGoogle Scholar
  7. 7.
    Clark SW, Bennett GN, Rudolph FB (1989) Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate: coenzyme A-transferase (EC and in other solvent pathway enzymes. Appl Environ Microbiol 55:970–976PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14:630–641CrossRefGoogle Scholar
  9. 9.
    Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381CrossRefGoogle Scholar
  10. 10.
    Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142(Pt 8):2079–2086CrossRefGoogle Scholar
  11. 11.
    Heux S, Cachon R, Dequin S (2006) Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8:303–314CrossRefGoogle Scholar
  12. 12.
    Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, Vemuri GN (2010) Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem 285:17498–17506CrossRefGoogle Scholar
  13. 13.
    Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, do Seung Y, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanolfermentation. Appl Environ Microbiol 78:1416–1423CrossRefGoogle Scholar
  14. 14.
    Lee J, Yun H, Feist AM, Palsson BØ, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862CrossRefGoogle Scholar
  15. 15.
    Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647CrossRefGoogle Scholar
  16. 16.
    Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10:190–195PubMedGoogle Scholar
  17. 17.
    Meyer CL, Papoutsakis ET (1989) Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl Microbiol Biotechnol 30:450–459CrossRefGoogle Scholar
  18. 18.
    Lin YL, Blaschek HP (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl Environ Microbiol 45:966–973PubMedPubMedCentralGoogle Scholar
  19. 19.
    San KY, Bennett GN, Berríos-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4:182–192CrossRefGoogle Scholar
  20. 20.
    Tucci S, Martin W (2007) A novel prokaryotic trans-2-enoyl-CoA reductase from the spirochete Treponema denticola. FEBS Lett 581:1561–1566CrossRefGoogle Scholar
  21. 21.
    Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:2402–2407CrossRefGoogle Scholar
  22. 22.
    Verho R, Londesborough J, Penttilä M, Richard P (2003) Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol 69:5892–5897CrossRefGoogle Scholar
  23. 23.
    Wang S, Huang H, Moll J, Thauer RK (2010) NADP+ reduction with reduced ferredoxin and NADP+ reduction with NADH are coupled via an electron-bifurcating enzyme complex in Clostridium kluyveri. J Bacteriol 192:5115–5123CrossRefGoogle Scholar
  24. 24.
    Zhao H, Van der Donk WA (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589CrossRefGoogle Scholar
  25. 25.
    Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  1. 1.Department of BioSciencesRice UniversityHoustonUSA
  2. 2.Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouChina
  3. 3.Department of BioengineeringRice UniversityHoustonUSA
  4. 4.Department of Chemical and Biomolecular EngineeringRice UniversityHoustonUSA
  5. 5.Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life SciencesFujian Normal UniversityFuzhouChina

Personalised recommendations