Advertisement

Metabolomic and proteomic analysis of d-lactate-producing Lactobacillus delbrueckii under various fermentation conditions

  • Shaoxiong Liang
  • Dacheng Gao
  • Huanhuan Liu
  • Cheng Wang
  • Jianping Wen
Fermentation, Cell Culture and Bioengineering - Original Paper
  • 256 Downloads

Abstract

As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.

Keywords

d-lactate Fermentation condition Metabolomics Proteomics Lactobacillus delbrueckii 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (no. 21676189); and the key technologies R & D program of Tianjin (no. 16YFZCSY00780).

Supplementary material

10295_2018_2048_MOESM1_ESM.xlsx (270 kb)
Supplementary material 1 (XLSX 271 kb)
10295_2018_2048_MOESM2_ESM.pdf (555 kb)
Supplementary material 2 (PDF 555 kb)

References

  1. 1.
    Abdel-Banat BMA, Hoshida H, Ano A, Nonklang S, Akada R (2010) High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl Microbiol Biotechnol 85:861–867.  https://doi.org/10.1007/s00253-009-2248-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Bai Z, Gao Z, Sun J, Wu B, He B (2016) d-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. Bioresour Technol 207:346–352.  https://doi.org/10.1016/j.biortech.2016.02.007 CrossRefPubMedGoogle Scholar
  3. 3.
    Berry AR, Franco CMM, Zhang W, Middelberg APJ (1999) Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol Lett 21:163–167.  https://doi.org/10.1023/a:1005483609065 CrossRefGoogle Scholar
  4. 4.
    Christensen J, Dudley E, Pederson JA, Steele J (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76(1–4):217–246.  https://doi.org/10.1023/a:1002001919720 CrossRefPubMedGoogle Scholar
  5. 5.
    Courant F, Martzolff A, Rabin G, Antignac J-P, Le Bizec B, Giraudeau P, Tea I, Akoka S, Couzinet A, Cogne G, Grizeau D, Goncalves O (2013) How metabolomics can contribute to bio-processes: a proof of concept study for biomarkers discovery in the context of nitrogen-starved microalgae grown in photobioreactors. Metabolomics 9:1286–1300.  https://doi.org/10.1007/s11306-013-0532-y CrossRefGoogle Scholar
  6. 6.
    Ding M-Z, Cheng J-S, Xiao W-H, Qiao B, Yuan Y-J (2009) Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC–TOF–MS. Metabolomics 5:229–238.  https://doi.org/10.1007/s11306-008-0145-z CrossRefGoogle Scholar
  7. 7.
    Fernández M, Zúñiga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183.  https://doi.org/10.1080/10408410600880643 CrossRefPubMedGoogle Scholar
  8. 8.
    Fodinger M, Horl WH, Sunder-Plassmann G (2000) Molecular biology of 5,10-methylenetetrahydrofolate reductase. J Nephrol 13:20–33PubMedGoogle Scholar
  9. 9.
    Francl AL, Thongaram T, Miller MJ (2010) The PTS transporters of Lactobacillus gasseri ATCC 33323. BMC Microbiol 10:77.  https://doi.org/10.1186/1471-2180-10-77 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Frees D, Vogensen FK, Ingmer H (2003) Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol 87:293–300.  https://doi.org/10.1016/s0168-1605(03)00104-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Fu X, Wang Y, Wang J, Garza E, Manow R, Zhou S (2017) Semi-industrial scale (30 m3) fed-batch fermentation for the production of d-lactate by Escherichia coli strain HBUT-D15. J Ind Microbiol Biotechnol 44:221–228.  https://doi.org/10.1007/s10295-016-1877-9 CrossRefPubMedGoogle Scholar
  12. 12.
    Fukushima K, Chang Y-H, Kimura Y (2007) Enhanced stereocomplex formation of poly(l-lactic acid) and poly(d-lactic acid) in the presence of stereoblock poly(lactic acid). Macromol Biosci 7:829–835.  https://doi.org/10.1002/mabi.200700028 CrossRefPubMedGoogle Scholar
  13. 13.
    Gan CS, Chong PK, Pham TK, Wright PC (2007) Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 6:821–827.  https://doi.org/10.1021/pr060474i CrossRefPubMedGoogle Scholar
  14. 14.
    Gao X, Sun T, Wu L, Chen L, Zhang W (2017) Co-overexpression of response regulator genes slr1037 and sll0039 improves tolerance of Synechocystis sp PCC 6803 to 1-butanol. Bioresour Technol 245:1476–1483.  https://doi.org/10.1016/j.biortech.2017.04.112 CrossRefPubMedGoogle Scholar
  15. 15.
    Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84.  https://doi.org/10.1023/a:1020200822435 CrossRefGoogle Scholar
  16. 16.
    Giraud E, Lelong B, Raimbault M (1991) Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl Microbiol Biotechnol 36:96–99.  https://doi.org/10.1007/bf00164706 CrossRefGoogle Scholar
  17. 17.
    Glaasker E, Heuberger EHML, Konings WN, Poolman B (1998) Mechanism of osmotic activation of the quaternary ammonium compound transporter (QacT) of Lactobacillus plantarum. J Bacteriol 180:5540PubMedPubMedCentralGoogle Scholar
  18. 18.
    Glaasker E, Konings WN, Poolman B (1996) Osmotic regulation of intracellular solute pools in Lactobacillus plantarum. J Bacteriol 178:575CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goehring NW, Beckwith J (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15:R514–R526.  https://doi.org/10.1016/j.cub.2005.06.038 CrossRefPubMedGoogle Scholar
  20. 20.
    Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264.  https://doi.org/10.1099/00221287-147-8-2255 CrossRefPubMedGoogle Scholar
  21. 21.
    Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb Technol 26:87–107.  https://doi.org/10.1016/s0141-0229(99)00155-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Hua Y, Wang S, Liu Z, Liu X, Zou L, Gu W, Hou Y, Ma Y, Luo Y, Liu J (2016) iTRAQ-based quantitative proteomic analysis of cultivated Pseudostellaria heterophylla and its wild-type. J Proteom 139:13–25.  https://doi.org/10.1016/j.jprot.2016.02.027 CrossRefGoogle Scholar
  23. 23.
    Hutkins RW, Nannen NL (1993) pH homeostasis in lactic acid bacteria. J Dairy Sci 76:2354–2365.  https://doi.org/10.3168/jds.S0022-0302(93)77573-6 CrossRefGoogle Scholar
  24. 24.
    Klotz S, Kaufmann N, Kuenz A, Prüße U (2016) Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 100:9423–9437.  https://doi.org/10.1007/s00253-016-7843-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Klotz S, Kuenz A, Pruesse U (2017) Nutritional requirements and the impact of yeast extract on the d-lactic acid production by Sporolactobacillus inulinus. Green Chem 19:4633–4641.  https://doi.org/10.1039/c7gc01796k CrossRefGoogle Scholar
  26. 26.
    Koponen J, Laakso K, Koskenniemi K, Kankainen M, Savijoki K, Nyman TA, de Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2012) Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J Proteom 75:1357–1374.  https://doi.org/10.1016/j.jprot.2011.11.009 CrossRefGoogle Scholar
  27. 27.
    Li J, Sun J, Wu B, He B (2017) Combined utilization of nutrients and sugar derived from wheat bran for d-lactate fermentation by Sporolactobacillus inulinus YBS1-5. Bioresour Technol 229:33–38.  https://doi.org/10.1016/j.biortech.2016.12.101 CrossRefPubMedGoogle Scholar
  28. 28.
    Liu H, Huang D, Jin L, Wang C, Liang S, Wen J (2017) Integrating multi-omics analyses of Nonomuraea dietziae to reveal the role of soybean oil in [(4′-OH)MeLeu]4-CsA overproduction. Microb Cell Fact 16:120.  https://doi.org/10.1186/s12934-017-0739-0 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lv L-X, Yan R, Shi H-Y, Shi D, Fang D-Q, Jiang H-Y, Wu W-R, Guo F-F, Jiang X-W, Gu S-L, Chen Y-B, Yao J, Li L-J (2017) Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01. J Proteom 150:216–229.  https://doi.org/10.1016/j.jprot.2016.08.021 CrossRefGoogle Scholar
  30. 30.
    Marty-Teysset C, de la Torre F, Garel JR (2000) Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol 66:262–267.  https://doi.org/10.1128/aem.66.1.262-267.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mimitsuka T, Na K, Morita K, Sawai H, Minegishi S, Henmi M, Yamada K, Shimizu S, Yonehara T (2012) A membrane-integrated fermentation reactor system: its effects in reducing the amount of sub-raw materials for d-lactic acid continuous fermentation by Sporolactobacillus laevolacticus. Biosci Biotechnol Biochem 76:67–72.  https://doi.org/10.1271/bbb.110499 CrossRefPubMedGoogle Scholar
  32. 32.
    Miyoshi A, Rochat T, Gratadoux J-J, Le Loir Y, Oliveira SC, Langella P, Azevedo V (2003) Oxidative stress in Lactococcus lactis. Genet Mol Res 2:348–359PubMedGoogle Scholar
  33. 33.
    Morishita T, Yajima M (1995) Incomplete operation of biosynthetic and bioenergetic functions of the citric acid cycle in multiple auxotrophic Lactobacilli. Biosci Biotechnol Biochem 59:251–255.  https://doi.org/10.1271/bbb.59.251 CrossRefGoogle Scholar
  34. 34.
    Mura A, Fadda D, Perez AJ, Danforth ML, Musu D, Rico AI, Krupka M, Denapaite D, Tsui H-CT, Winkler ME, Branny P, Vicente M, Margolin W, Massidda O (2017) Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. J Bacteriol.  https://doi.org/10.1128/jb.00608-16 PubMedCentralGoogle Scholar
  35. 35.
    Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794.  https://doi.org/10.1016/j.biortech.2011.10.017 CrossRefPubMedGoogle Scholar
  36. 36.
    Papadimitriou K, Alegria A, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zuniga M, Tsakalidou E, Kok J (2016) Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80:837–890.  https://doi.org/10.1128/mmbr.00076-15 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Papagianni M, Avramidis N (2011) Lactococcus lactis as a cell factory: a twofold increase in phosphofructokinase activity results in a proportional increase in specific rates of glucose uptake and lactate formation. Enzyme Microb Technol 49:197–202.  https://doi.org/10.1016/j.enzmictec.2011.05.002 CrossRefPubMedGoogle Scholar
  38. 38.
    Papagianni M, Avramidis N, Filiousis G (2007) Glycolysis and the regulation of glucose transport in Lactococcus lactis spp. lactis in batch and fed-batch culture. Microb Cell Fact 6:16.  https://doi.org/10.1186/1475-2859-6-16 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Partanen L, Marttinen N, Alatossava T (2001) Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst Appl Microbiol 24:500–506.  https://doi.org/10.1078/0723-2020-00078 CrossRefPubMedGoogle Scholar
  40. 40.
    Pei G, Chen L, Zhang W (2017) Chapter nine-WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol 585:135–158CrossRefPubMedGoogle Scholar
  41. 41.
    Purvis JE, Yomano LP, Ingram LO (2005) Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 71:3761–3769.  https://doi.org/10.1128/aem.71.7.3761-3769.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Roudot-Algaron F, Yvon M (1998) Aromatic and branched chain amino acids catabolism in Lactococcus lactis. Lait 78:23–30CrossRefGoogle Scholar
  43. 43.
    Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406CrossRefPubMedGoogle Scholar
  44. 44.
    Serrazanetti DI, Ndagijimana M, Sado-Kamdem SL, Corsetti A, Vogel RF, Ehrmann M, Guerzoni ME (2011) Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 77:2656–2666.  https://doi.org/10.1128/AEM.01826-10 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Su Y, Wang J, Shi M, Niu X, Yu X, Gao L, Zhang X, Chen L, Zhang W (2014) Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. Bioresour Technol 170:522–529.  https://doi.org/10.1016/j.biortech.2014.08.018 CrossRefPubMedGoogle Scholar
  46. 46.
    Sun J, Wang Y, Wu B, Bai Z, He B (2015) Enhanced production of d-lactic acid by Sporolactobacillus sp Y2-8 mutant generated by atmospheric and room temperature plasma. Biotechnol Appl Biochem 62:287–292.  https://doi.org/10.1002/bab.1267 CrossRefPubMedGoogle Scholar
  47. 47.
    Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251.  https://doi.org/10.1007/s00253-006-0488-1 CrossRefPubMedGoogle Scholar
  48. 48.
    Turgay K (2011) Role of proteolysis and chaperones in stress response and regulation. Bacterial stress responses, 2nd edn. American Society of Microbiology, Washington, DC, pp 75–90CrossRefGoogle Scholar
  49. 49.
    van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279.  https://doi.org/10.1073/pnas.0603024103 CrossRefPubMedGoogle Scholar
  50. 50.
    van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 82:187–216.  https://doi.org/10.1023/a:1020631532202 CrossRefGoogle Scholar
  51. 51.
    Wang C, Liu J, Liu H, Liang S, Wen J (2017) Combining metabolomics and network analysis to improve tacrolimus production in Streptomyces tsukubaensis using different exogenous feedings. J Ind Microbiol Biotechnol 44:1527–1540.  https://doi.org/10.1007/s10295-017-1974-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Wang G, Huang D, Qi H, Wen J, Jia X, Chen Y (2013) Rational medium optimization based on comparative metabolic profiling analysis to improve fumaric acid production. Bioresour Technol 137:1–8.  https://doi.org/10.1016/j.biortech.2013.03.041 CrossRefPubMedGoogle Scholar
  53. 53.
    Wang J, Hui W, Cao C, Jin R, Ren C, Zhang H, Zhang W (2016) Proteomic analysis of an engineered isolate of Lactobacillus plantarum with enhanced raffinose metabolic capacity. Sci Rep 6:31403.  https://doi.org/10.1038/srep31403 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang L, Zhao B, Li F, Xu K, Ma C, Tao F, Li Q, Xu P (2011) Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017.  https://doi.org/10.1007/s00253-010-2904-9 CrossRefPubMedGoogle Scholar
  55. 55.
    Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110:2717–2730.  https://doi.org/10.1002/bit.24941 CrossRefPubMedGoogle Scholar
  56. 56.
    Yu X, Niu X, Zhang X, Pei G, Liu J, Chen L, Zhang W (2015) Identification and mechanism analysis of chemical modulators enhancing astaxanthin accumulation in Haematococcus pluvialis. Algal Res 11:284–293.  https://doi.org/10.1016/j.algal.2015.07.006 CrossRefGoogle Scholar
  57. 57.
    Zhai Z, Douillard FP, An H, Wang G, Guo X, Luo Y, Hao Y (2014) Proteomic characterization of the acid tolerance response in Lactobacillus delbrueckii subsp bulgaricus CAUH1 and functional identification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol 16:1524–1537.  https://doi.org/10.1111/1462-2920.12280 CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article 17CrossRefGoogle Scholar
  59. 59.
    Zhao J, Baba T, Mori H, Shimizu K (2004) Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab Eng 6:164–174.  https://doi.org/10.1016/j.ymben.2004.02.004 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2018

Authors and Affiliations

  • Shaoxiong Liang
    • 1
    • 2
  • Dacheng Gao
    • 3
  • Huanhuan Liu
    • 4
    • 5
  • Cheng Wang
    • 1
    • 2
  • Jianping Wen
    • 1
    • 2
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinPeople’s Republic of China
  2. 2.SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China
  3. 3.Dalian Research Institute of Petroleum and PetrochemicalsSINOPECDalianPeople’s Republic of China
  4. 4.State Key Laboratory of Food Nutrition and SafetyTianjin University of Science and TechnologyTianjinChina
  5. 5.Key Laboratory of Food Nutrition and Safety, Ministry of EducationTianjin University of Science and TechnologyTianjinChina

Personalised recommendations