Advertisement

Refining and expanding nonribosomal peptide synthetase function and mechanism

  • Matt McErlean
  • Jonathan Overbay
  • Steven Van LanenEmail author
Natural Products - Original Paper

Abstract

Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.

Keywords

NRPS Natural products Bioinformatics Discovery Domain Mechanism 

Notes

Acknowledgements

We appreciate the in depth discussions with Dr. Sylvie Garneau-Tsodikova and Taylor Lundy (Department of Pharmaceutical Sciences, University of Kentucky). Natural product-inspired research in the Van Lanen laboratory is supported in part by National Institutes of Health Grants AI128862, AI087849, and CA217255.

References

  1. 1.
    Al-Mestarihi AH, Villamizar G, Fernandez J, Zolova OE, Lombo F, Garneau-Tsodikova S (2014) Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis. J Am Chem Soc 136:17350–17354CrossRefPubMedGoogle Scholar
  2. 2.
    Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184CrossRefPubMedGoogle Scholar
  3. 3.
    Balibar CJ, Howard-Jones AR, Walsh CT (2007) Terrequinone A biosynthesis through l-tryptophan oxidation, dimerization and bisprenylation. Nat Chem Biol 3:584–592CrossRefPubMedGoogle Scholar
  4. 4.
    Balibar CJ, Walsh CT (2006) GliP, a multimodular nonribosomal peptide synthetase in Aspergillus fumigatus, makes the diketopiperazine scaffold of gliotoxin. Biochemistry 45:15029–15038CrossRefPubMedGoogle Scholar
  5. 5.
    Belshaw PJ, Walsh CT, Stachelhaus T (1999) Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284:486–489CrossRefPubMedGoogle Scholar
  6. 6.
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefGoogle Scholar
  7. 7.
    Bian X, Fu J, Plaza A, Herrmann J, Pistorius D, Stewart AF, Zhang Y, Muller R (2013) In vivo evidence for a prodrug activation mechanism during colibactin maturation. ChemBioChem 14:1194–1197CrossRefPubMedGoogle Scholar
  8. 8.
    Bian X, Plaza A, Zhang Y, Muller R (2015) Two more pieces of the colibactin genotoxin puzzle from Escherichia coli show incorporation of an unusual 1-aminocyclopropanecarboxylic acid moiety. Chem Sci 6:3154–3160CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bischoff D, Bister B, Bertazzo M, Pfeifer V, Stegmann E, Nicholson GJ, Keller S, Pelzer S, Wohlleben W, Sussmuth RD (2005) The biosynthesis of vancomycin-type glycopeptide antibiotics—a model for oxidative side-chain cross-linking by oxygenases coupled to the action of peptide synthetases. ChemBioChem 6:267–272CrossRefPubMedGoogle Scholar
  10. 10.
    Bischoff D, Pelzer S, Holtzel A, Nicholson GJ, Stockert S, Wohlleben W, Jung G, Sussmuth RD (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics-new insights into the cyclization steps. Angew Chem Int Ed Engl 40:1693–1696CrossRefPubMedGoogle Scholar
  11. 11.
    Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D, Petit C, Oswald E, Nougayrede JP (2018) The colibactin genotoxin generates DNA interstrand cross-links in infected cells. MBio 9Google Scholar
  12. 12.
    Broberg A, Menkis A, Vasiliauskas R (2006) Kutznerides 1-4, depsipeptides from the actinomycete Kutzneria sp. 744 inhabiting mycorrhizal roots of Picea abies seedlings. J Nat Prod 69:97–102CrossRefPubMedGoogle Scholar
  13. 13.
    Brotherton CA, Balskus EP (2013) A prodrug resistance mechanism is involved in colibactin biosynthesis and cytotoxicity. J Am Chem Soc 135:3359–3362CrossRefPubMedGoogle Scholar
  14. 14.
    Brotherton CA, Wilson M, Byrd G, Balskus EP (2015) Isolation of a metabolite from the pks island provides insights into colibactin biosynthesis and activity. Org Lett 17:1545–1548CrossRefPubMedGoogle Scholar
  15. 15.
    Condurso HL, Bruner SD (2012) Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Nat Prod Rep 29:1099–1110CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 10:301–310CrossRefPubMedGoogle Scholar
  17. 17.
    Cao S, Yang Y, Ng NL, Guo Z (2005) Macrolactonization catalyzed by the terminal thioesterase domain of the nonribosomal peptide synthetase responsible for lichenysin biosynthesis. Bioorg Med Chem Lett 15:2595–2599CrossRefPubMedGoogle Scholar
  18. 18.
    Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628CrossRefPubMedGoogle Scholar
  19. 19.
    Challis GL, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7:211–224CrossRefPubMedGoogle Scholar
  20. 20.
    Clevenger KD, Ye R, Bok JW, Thomas PM, Islam MN, Miley GP, Robey MT, Chen C, Yang K, Swyers M, Wu E, Gao P, Wu CC, Keller NP, Kelleher NL (2018) Interrogation of benzomalvin biosynthesis using fungal artificial chromosomes with metabolomic scoring (FAC-MS): discovery of a benzodiazepine synthase activity. Biochemistry 57:3237–3243CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Clugston SL, Sieber SA, Marahiel MA, Walsh CT (2003) Chirality of peptide bond-forming condensation domains in nonribosomal peptide synthetases: the C5 domain of tyrocidine synthetase is a (D)C(L) catalyst. Biochemistry 42:12095–12104CrossRefPubMedGoogle Scholar
  22. 22.
    Cougnoux A, Gibold L, Robin F, Dubois D, Pradel N, Darfeuille-Michaud A, Dalmasso G, Delmas J, Bonnet R (2012) Analysis of structure-function relationships in the colibactin-maturating enzyme ClbP. J Mol Biol 424:203–214CrossRefPubMedGoogle Scholar
  23. 23.
    de Mattos-Shipley KMJ, Greco C, Heard DM, Hough G, Mulholland NP, Vincent JL, Micklefield J, Simpson TJ, Willis CL, Cox RJ, Bailey AM (2018) The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis. Chem Sci 9:4109–4117CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287CrossRefPubMedGoogle Scholar
  25. 25.
    Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM (2016) Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529:235–238CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Drake EJ, Nicolai DA, Gulick AM (2006) Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain. Chem Biol 13:409–419CrossRefPubMedGoogle Scholar
  27. 27.
    Du L, Chen M, Sanchez C, Shen B (2000) An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. FEMS Microbiol Lett 189:171–175CrossRefPubMedGoogle Scholar
  28. 28.
    Du L, Lou L (2010) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278.  https://doi.org/10.1039/b912037h CrossRefPubMedGoogle Scholar
  29. 29.
    Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet JC, Harris SD, Yuen G, Li X-C, Du L (2007) Structure and biosynthesis of Heat-Stable Antifungal Factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrob Agents Chemother 51:64–72CrossRefPubMedGoogle Scholar
  31. 31.
    Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, Walsh CT, Wagner G (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fujimori DG, Hrvatin S, Neumann CS, Strieker M, Marahiel MA, Walsh CT (2007) Cloning and characterization of the biosynthetic gene cluster for kutznerides. Proc Natl Acad Sci USA 104:16498–16503CrossRefPubMedGoogle Scholar
  33. 33.
    Funabashi M, Yang Z, Nonaka K, Hosobuchi M, Fujita Y, Shibata T, Chi X, Van Lanen SG (2010) An ATP-independent strategy for amide bond formation in antibiotic biosynthesis. Nat Chem Biol 6:581–586CrossRefPubMedGoogle Scholar
  34. 34.
    Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, Tang Y (2012) Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol 8:823–830CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Geib N, Woithe K, Zerbe K, Li DB, Robinson JA (2008) New insights into the first oxidative phenol coupling reaction during vancomycin biosynthesis. Bioorg Med Chem Lett 18:3081–3084CrossRefPubMedGoogle Scholar
  36. 36.
    Grunewald J, Kopp F, Mahlert C, Linne U, Sieber SA, Marahiel MA (2005) Fluorescence resonance energy transfer as a probe of peptide cyclization catalyzed by nonribosomal thioesterase domains. Chem Biol 12:873–881CrossRefPubMedGoogle Scholar
  37. 37.
    Grunewald J, Sieber SA, Marahiel MA (2004) Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor. Biochemistry 43:2915–2925CrossRefPubMedGoogle Scholar
  38. 38.
    Gulick AM (2009) Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hadatsch B, Butz D, Schmiederer T, Steudle J, Wohlleben W, Sussmuth R, Stegmann E (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide A47934. Chem Biol 14:1078–1089CrossRefPubMedGoogle Scholar
  40. 40.
    Hai Y, Tang Y (2018) Biosynthesis of long-chain N-acyl amide by a truncated polyketide synthase-nonribosomal peptide synthetase hybrid megasynthase in fungi. J Am Chem Soc 140:1271–1274CrossRefPubMedGoogle Scholar
  41. 41.
    Hasebe F, Matsuda K, Shiraishi T, Futamura Y, Nakano T, Tomita T, Ishigami K, Taka H, Mineki R, Fujimura T, Osada H, Kuzuyama T, Nishiyama M (2016) Amino-group carrier-protein-mediated secondary metabolite biosynthesis in Streptomyces. Nat Chem Biol 12:967–972CrossRefPubMedGoogle Scholar
  42. 42.
    Haslinger K, Peschke M, Brieke C, Maximowitsch E, Cryle MJ (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521:105–109CrossRefPubMedGoogle Scholar
  43. 43.
    Homburg S, Oswald E, Hacker J, Dobrindt U (2007) Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol Lett 275:255–262CrossRefPubMedGoogle Scholar
  44. 44.
    Hur GH, Meier JL, Baskin J, Codelli JA, Bertozzi CR, Marahiel MA, Burkart MD (2009) Crosslinking studies of protein-protein interactions in nonribosomal peptide biosynthesis. Chem Biol 16:372–381CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Keating TA, Ehmann DE, Kohli RM, Marshall CG, Trauger JW, Walsh CT (2001) Chain termination steps in nonribosomal peptide synthetase assembly lines: directed acyl-S-enzyme breakdown in antibiotic and siderophore biosynthesis. ChemBioChem 2:99–107CrossRefPubMedGoogle Scholar
  46. 46.
    Matsuda K, Hasebe F, Shiwa Y, Kanesaki Y, Tomita T, Yoshikawa H, Shin-ya K, Kuzuyama T, Nishiyama M (2017) Genome mining of amino group carrier protein-mediated machinery: discovery and biosynthetic characterization of a natural product with unique hydrazone unit. ACS Chem Bio 12:124–131CrossRefGoogle Scholar
  47. 47.
    Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA (2004) The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J Biol Chem 279:7413–7419CrossRefPubMedGoogle Scholar
  48. 48.
    Kim WE, Patel A, Hur GH, Tufar P, Wuo MG, McCammon JA, Burkart MD (2018) Mechanistic probes for the epimerization domain of nonribosomal peptide synthetases. Chembiochem.  https://doi.org/10.1002/cbic.201800439 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kleinkauf H, Gevers W (1969) Nonribosomal polypeptide synthesis: the biosynthesis of a cyclic peptide antibiotic, gramicidin S. Cold Spring Harb Symp Quant Biol 34:805–813CrossRefPubMedGoogle Scholar
  50. 50.
    Kleinkauf H, von Dohren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15CrossRefPubMedGoogle Scholar
  51. 51.
    Konno S, Ishikawa F, Suzuki T, Dohmae N, Burkart MD, Kakeya H (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commun (Camb) 51:2262–2265CrossRefGoogle Scholar
  52. 52.
    Kudo F, Miyanaga A, Eguchi T (2019) Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. J Ind Microbiol Biotechnol (in press)Google Scholar
  53. 53.
    Kuse M, Franz T, Koga K, Suwan S, Isobe M, Agata N, Ohta M (2000) High incorporation of l-amino acids to cereulide, an emetic toxin from Bacillus cereus. Bioorg Med Chem Lett 10:735–739CrossRefPubMedGoogle Scholar
  54. 54.
    Lambalot RH, Walsh CT (1995) Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J Biol Chem 270:24658–24661CrossRefPubMedGoogle Scholar
  55. 55.
    Li X, Zhu J, Shi G, Sun M, Guo Z, Wang H, Lu C, Shen Y (2016) Deletion of the side chain assembly reveals diverse post-PKS modifications in the biosynthesis of ansatrienins. RSC Advances 6:88571–88579CrossRefGoogle Scholar
  56. 56.
    Li ZR, Li J, Gu JP, Lai JY, Duggan BM, Zhang WP, Li ZL, Li YX, Tong RB, Xu Y, Lin DH, Moore BS, Qian PY (2016) Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 12:773–775CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li ZR, Li Y, Lai JY, Tang J, Wang B, Lu L, Zhu G, Wu X, Xu Y, Qian PY (2015) Critical intermediates reveal new biosynthetic events in the enigmatic colibactin pathway. ChemBioChem 16:1715–1719CrossRefPubMedGoogle Scholar
  58. 58.
    Lin S, Van Lanen SG, Shen B (2009) A free-standing condensation enzyme catalyzing ester bond formation in C-1027 biosynthesis. Proc Natl Acad Sci USA 106:4183–4188CrossRefPubMedGoogle Scholar
  59. 59.
    Liu J, Wang B, Li H, Xie Y, Li Q, Qin X, Zhang X, Ju J (2015) Biosynthesis of the anti-infective marformycins featuring pre-NRPS assembly line N-formylation and O-methylation and post-assembly line C-hydroxylation chemistries. Org Lett 17:1509–1512CrossRefPubMedGoogle Scholar
  60. 60.
    Liu X, Jin Y, Cui Z, Nonaka K, Baba S, Funabashi M, Yang Z, Van Lanen SG (2016) The role of a nonribosomal peptide synthetase in l-lysine lactamization during capuramycin biosynthesis. ChemBioChem 17:804–810CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu Y, Li M, Mu H, Song S, Zhang Y, Chen K, He X, Wang H, Dai Y, Lu F, Yan Z, Zhang H (2017) Identification and characterization of the ficellomycin biosynthesis gene cluster from Streptomyces ficellus. Appl Microbiol Biotechnol 101:7589–7602CrossRefPubMedGoogle Scholar
  62. 62.
    Lombo F, Velasco A, Castro A, de la Calle F, Brana AF, Sanchez-Puelles JM, Mendez C, Salas JA (2006) Deciphering the biosynthesis pathway of the antitumor thiocoraline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem 7:366–376CrossRefPubMedGoogle Scholar
  63. 63.
    Lou L, Chen H, Cerny RL, Li Y, Shen Y, Du L (2012) Unusual activities of the thioesterase domain for the biosynthesis of the polycyclic tetramate macrolactam HSAF in Lysobacter enzymogenes C3. Biochemistry 51:4–6CrossRefPubMedGoogle Scholar
  64. 64.
    Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault PH, Liu F, Du L (2011) Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenes. J Am Chem Soc 133:643–645CrossRefPubMedGoogle Scholar
  65. 65.
    Lundy TA, Mori S, Garneau-Tsodikova S (2018) Engineering bifunctional enzymes capable of adenylating and selectively methylating the side chain or core of amino acids. ACS Synth Biol 7:399–404CrossRefPubMedGoogle Scholar
  66. 66.
    Luo L, Kohli RM, Onishi M, Linne U, Marahiel MA, Walsh CT (2002) Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. Biochemistry 41:9184–9196CrossRefPubMedGoogle Scholar
  67. 67.
    Magarvey NA, Ehling-Schulz M, Walsh CT (2006) Characterization of the cereulide NRPS alpha-hydroxy acid specifying modules: activation of alpha-keto acids and chiral reduction on the assembly line. J Am Chem Soc 128:10698–10699CrossRefPubMedGoogle Scholar
  68. 68.
    Marahiel MA (1992) Multidomain enzymes involved in peptide synthesis. FEBS Lett 307:40–43CrossRefPubMedGoogle Scholar
  69. 69.
    Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:561–567CrossRefPubMedGoogle Scholar
  70. 70.
    Marahiel MA, Krause M, Skarpeid HJ (1985) Cloning of the tyrocidine synthetase 1 gene from Bacillus brevis and its expression in Escherichia coli. Mol Gen Genet 201:231–236CrossRefPubMedGoogle Scholar
  71. 71.
    Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674CrossRefPubMedGoogle Scholar
  72. 72.
    Mori S, Garzan A, Tsodikov OV, Garneau-Tsodikova S (2017) Deciphering nature’s intricate way of N, S-dimethylating l-cysteine: sequential action of two bifunctional adenylation domains. Biochemistry 56:6087–6097CrossRefPubMedGoogle Scholar
  73. 73.
    Mori S, Pang AH, Lundy TA, Garzan A, Tsodikov OV, Garneau-Tsodikova S (2018) Structural basis for backbone N-methylation by an interrupted adenylation domain. Nat Chem Biol 14:428–430CrossRefPubMedGoogle Scholar
  74. 74.
    Muramatsu Y, Miyakoshi S, Ogawa Y, Ohnuki T, Ishii MM, Arai M, Takatsu T, Inukai M (2003) Studies on novel bacterial translocase I inhibitors, A-500359 s. III. Deaminocaprolactam derivatives of capuramycin: A-500359 E, F, H; M-1 and M-2. J Antibiot (Tokyo) 56:259–267CrossRefGoogle Scholar
  75. 75.
    Nougayrede JP, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E (2006) Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848–851CrossRefPubMedGoogle Scholar
  76. 76.
    Oliver RA, Li R, Townsend CA (2018) Monobactam formation in sulfazecin by a nonribosomal peptide synthetase thioesterase. Nat Chem Biol 14:5–7CrossRefPubMedGoogle Scholar
  77. 77.
    Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW (2018) Discovery of the tyrobetaine natural products and their biosynthetic gene cluster via metabologenomics. ACS Chem Biol 13:1029–1037CrossRefPubMedGoogle Scholar
  78. 78.
    Payne JA, Schoppet M, Hansen MH, Cryle MJ (2016) Diversity of nature’s assembly lines—recent discoveries in non-ribosomal peptide synthesis. Mol BioSyst 13:9–22CrossRefPubMedGoogle Scholar
  79. 79.
    Pohanka A, Menkis A, Levenfors J, Broberg A (2006) Low-abundance kutznerides from Kutzneria sp. 744. J Nat Prod 69:1776–1781CrossRefPubMedGoogle Scholar
  80. 80.
    Rausch C, Hoof I, Weber T, Wohlleben W, Huson DH (2007) Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution. BMC Evol Biol 7:78CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 33:5799–5808CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Read JA, Walsh CT (2007) The lyngbyatoxin biosynthetic assembly line: chain release by four-electron reduction of a dipeptidyl thioester to the corresponding alcohol. J Am Chem Soc 129:15762–15763CrossRefPubMedGoogle Scholar
  83. 83.
    Reimer JM, Aloise MN, Harrison PM, Schmeing TM (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529:239–242CrossRefPubMedGoogle Scholar
  84. 84.
    Reimer JM, Harb I, Ovchinnikova OG, Jiang J, Whitfield C, Schmeing TM (2018) Structural insight into a novel formyltransferase and evolution to a nonribosomal peptide synthetase tailoring domain. ACS Chem Biol 13:3161–3172CrossRefPubMedGoogle Scholar
  85. 85.
    Romero F, Espliego F, Perez Baz J, Garcia de Quesada T, Gravalos D, de la Calle F, Fernandez-Puentes JL (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine Micromonospora. I. Taxonomy, fermentation, isolation, and biological activities. J Antibiot (Tokyo) 50:734–737CrossRefGoogle Scholar
  86. 86.
    Roongsawang N, Lim SP, Washio K, Takano K, Kanaya S, Morikawa M (2005) Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiol Lett 252:143–151CrossRefPubMedGoogle Scholar
  87. 87.
    Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2–a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W3673CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Schaffer JE, Reck MR, Prasad NK, Wencewicz TA (2017) Beta-lactone formation during product release from a nonribosomal peptide synthetase. Nat Chem Biol 13:737–744CrossRefPubMedGoogle Scholar
  89. 89.
    Schneider TL, Shen B, Walsh CT (2003) Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. Biochemistry 42:9722–9730CrossRefPubMedGoogle Scholar
  90. 90.
    Schoenafinger G, Schracke N, Linne U, Marahiel MA (2006) Formylation domain: an essential modifying enzyme for the nonribosomal biosynthesis of linear gramicidin. J Am Chem Soc 128:7406–7407CrossRefPubMedGoogle Scholar
  91. 91.
    Schracke N, Linne U, Mahlert C, Marahiel MA (2005) Synthesis of linear gramicidin requires the cooperation of two independent reductases. Biochemistry 44:8507–8513CrossRefPubMedGoogle Scholar
  92. 92.
    Shaw-Reid CA, Kelleher NL, Losey HC, Gehring AM, Berg C, Walsh CT (1999) Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem Biol 6:385–400CrossRefPubMedGoogle Scholar
  93. 93.
    Shi G, Shi N, Li Y, Chen W, Deng J, Liu C, Zhu J, Wang H, Shen Y (2016) D-alanylation in the assembly of ansatrienin side chain is catalyzed by a modular NRPS. ACS Chem Biol 11:876–881CrossRefPubMedGoogle Scholar
  94. 94.
    Sieber SA, Tao J, Walsh CT, Marahiel MA (2004) Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. Angew Chem Int Ed Engl 43:493–498CrossRefPubMedGoogle Scholar
  95. 95.
    Sims JW, Schmidt EW (2008) Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains. J Am Chem Soc 130:11149–11155CrossRefPubMedGoogle Scholar
  96. 96.
    Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493–505CrossRefPubMedGoogle Scholar
  97. 97.
    Stachelhaus T, Walsh CT (2000) Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:5775–5787CrossRefPubMedGoogle Scholar
  98. 98.
    Stegmann E, Frasch HJ, Wohlleben W (2010) Glycopeptide biosynthesis in the context of basic cellular functions. Curr Opin Microbiol 13:595–602CrossRefPubMedGoogle Scholar
  99. 99.
    Stegmann E, Pelzer S, Bischoff D, Puk O, Stockert S, Butz D, Zerbe K, Robinson J, Sussmuth RD, Wohlleben W (2006) Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 124:640–653CrossRefPubMedGoogle Scholar
  100. 100.
    Sugita M, Natori Y, Sasaki T, Furihata K, Shimazu A, Seto H, Otake N (1982) Studies on mycotrienin antibiotics, a novel class of ansamycins. I. Taxonomy, fermentation, isolation and properties of mycotrienins I and II. J Antibiot (Tokyo) 35:1460–1466CrossRefGoogle Scholar
  101. 101.
    Sugita M, Sasaki T, Furihata K, Seto H, Otake N (1982) Studies on mycotrienin antibiotics, a novel class of ansamycins. II. Structure elucidation and biosynthesis of mycotrienins I and II. J Antibiot (Tokyo) 35:1467–1473CrossRefGoogle Scholar
  102. 102.
    Süssmuth RD, Pelzer S, Nicholson G, Walk T, Wohlleben W, Jung G (1999) New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from Amycolatopsis mediterranei. Angewandte Chemie International Edition 38:1976–1979CrossRefGoogle Scholar
  103. 103.
    Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663CrossRefPubMedGoogle Scholar
  104. 104.
    Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT (2000) Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215–218CrossRefPubMedGoogle Scholar
  105. 105.
    Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM (2017) Domain-targeted metabolomics delineates the heterocycle assembly steps of colibactin biosynthesis. J Am Chem Soc 139:4195–4201CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Van Lanen SG (2017) Biosynthesis: sAM cycles up for colibactin. Nat Chem Biol 13:1059–1061CrossRefPubMedGoogle Scholar
  107. 107.
    Vizcaino MI, Crawford JM (2015) The colibactin warhead crosslinks DNA. Nat Chem 7:411–417CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Vizcaino MI, Engel P, Trautman E, Crawford JM (2014) Comparative metabolomics and structural characterizations illuminate colibactin pathway-dependent small molecules. J Am Chem Soc 136:9244–9247CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Wackler B, Schneider P, Jacobs JM, Pauly J, Allen C, Nett M, Hoffmeister D (2011) Ralfuranone biosynthesis in Ralstonia solanacearum suggests functional divergence in the quinone synthetase family of enzymes. Chem Biol 18:354–360CrossRefPubMedGoogle Scholar
  110. 110.
    Walsh CT (2017) Are highly morphed peptide frameworks lurking silently in microbial genomes valuable as next generation antibiotic scaffolds? Nat Prod Rep 34:687–693CrossRefPubMedGoogle Scholar
  111. 111.
    Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496CrossRefPubMedGoogle Scholar
  112. 112.
    Weissman KJ (2015) The structural biology of biosynthetic megaenzymes. Nat Chem Biol 11:660–672CrossRefPubMedGoogle Scholar
  113. 113.
    Weissman KJ, Muller R (2008) Crystal structure of a molecular assembly line. Angew Chem Int Ed Engl 47:8344–8346CrossRefPubMedGoogle Scholar
  114. 114.
    Witkop B, Sarges R, Gramicidin A (1965) Gramicidin A. VI. The synthesis of valine-and isoleucine-gramicidin A. J Am Chem Soc 87:2020–2027CrossRefPubMedGoogle Scholar
  115. 115.
    Wu TS, Duncan J, Tsao SW, Chang CJ, Keller PJ, Floss HG (1987) Biosynthesis of the ansamycin antibiotic ansatrienin (mycotrienin) by Streptomyces collinus. J Nat Prod 50:108–118CrossRefPubMedGoogle Scholar
  116. 116.
    Wyche TP, Hou Y, Braun D, Cohen HC, Xiong MP, Bugni TS (2011) First natural analogs of the cytotoxic thiodepsipeptide thiocoraline A from a marine Verrucosispora sp. J Org Chem 76:6542–6547CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Xue M, Shine E, Wang W, Crawford JM, Herzon SB (2018) Characterization of natural colibactin-nucleobase adducts by tandem mass spectrometry and isotopic labeling. Support for DNA alkylation by cyclopropane ring opening. Biochemistry 57:6391–6394CrossRefPubMedGoogle Scholar
  118. 118.
    Yim G, Thaker MN, Koteva K, Wright G (2014) Glycopeptide antibiotic biosynthesis. J Antibiot (Tokyo) 67:31–41CrossRefGoogle Scholar
  119. 119.
    Zaleta-Rivera K, Xu C, Yu F, Butchko RA, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du L (2006) A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry 45:2561–2569CrossRefPubMedGoogle Scholar
  120. 120.
    Zerbe K, Woithe K, Li DB, Vitali F, Bigler L, Robinson JA (2004) An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. Angew Chem Int Ed Engl 43:6709–6713CrossRefPubMedGoogle Scholar
  121. 121.
    Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX, Kelleher NL, Balskus EP (2017) Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 13:1063–1065CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Zhang J, Liu N, Cacho RA, Gong Z, Liu Z, Qin W, Tang C, Tang Y, Zhou J (2016) Structural basis of nonribosomal peptide macrocyclization in fungi. Nat Chem Biol 12:1001–1003CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Zhao Q, He Q, Ding W, Tang M, Kang Q, Yu Y, Deng W, Zhang Q, Fang J, Tang G, Liu W (2008) Characterization of the azinomycin B biosynthetic gene cluster revealing a different iterative type I polyketide synthase for naphthoate biosynthesis. Chem Biol 15:693–705CrossRefPubMedGoogle Scholar
  124. 124.
    Zhou X, Huang H, Li J, Song Y, Jiang R, Liu J, Zhang S, Hua Y, Ju J (2014) New anti-infective cycloheptadepsipeptide congeners and absolute stereochemistry from the deep sea-derived Streptomyces drozdowiczii SCSIO 10141. Tetrahedron 70:7795–7801CrossRefGoogle Scholar
  125. 125.
    Zhu J, Chen W, Li YY, Deng JJ, Zhu DY, Duan J, Liu Y, Shi GY, Xie C, Wang HX, Shen YM (2014) Identification and catalytic characterization of a nonribosomal peptide synthetase-like (NRPS-like) enzyme involved in the biosynthesis of echosides from Streptomyces sp. LZ35. Gene 546:352–358CrossRefPubMedGoogle Scholar
  126. 126.
    Zolova OE, Garneau-Tsodikova S (2014) KtzJ-dependent serine activation and O-methylation by KtzH for kutznerides biosynthesis. J Antibiot (Tokyo) 67:59–64CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  • Matt McErlean
    • 1
  • Jonathan Overbay
    • 1
  • Steven Van Lanen
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations