Advertisement

A selective genome-guided method for environmental Burkholderia isolation

  • F. P. Jake Haeckl
  • João L. Baldim
  • Dasha Iskakova
  • Kenji L. Kurita
  • Marisi G. Soares
  • Roger G. LiningtonEmail author
Natural Products - Original Paper
  • 119 Downloads

Abstract

The genus Burkholderia is an emerging source of novel natural products chemistry, yet to date few methods exist for the selective isolation of strains of this genus from the environment. More broadly, tools to efficiently design selection media for any given genus would be of significant value to the natural products and microbiology communities. Using a modification of the recently published SMART protocol, we have developed a two-stage isolation protocol for strains from the genus Burkholderia. This method uses a combination of selective agar isolation media and multiplexed PCR profiling to derive Burkholderia strains from environmental samples with 95% efficiency. Creation of this new method paves the way for the systematic exploration of natural products chemistry from this important genus and offers new insight into potential methods for selective isolation method development for other priority genera.

Keywords

Burkholderia Selective isolation Natural products Rhizome 

Notes

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council RGPIN-2016-03962 (RGL) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) no. 8074135 (JLB).

Supplementary material

10295_2018_2121_MOESM1_ESM.pdf (3.8 mb)
Supplementary material 1 (PDF 3917 kb)
10295_2018_2121_MOESM2_ESM.xlsx (69 kb)
Supplementary material 2 (XLSX 69 kb)

References

  1. 1.
    Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de los Santos P, Yang P, Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch AM (2014) Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. PLoS One 9:e83779.  https://doi.org/10.1371/journal.pone.0083779 Google Scholar
  2. 2.
    Bergmark L, Poulsen PHB, Al-Soud WA, Norman A, Hansen LH, Sørensen SJ (2012) Assessment of the specificity of Burkholderia and Pseudomonas qPCR assays for detection of these genera in soil using 454 pyrosequencing. FEMS Microbiol Lett 333:77–84.  https://doi.org/10.1111/j.1574-6968.2012.02601.x Google Scholar
  3. 3.
    Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204.  https://doi.org/10.1016/j.biotechadv.2014.03.001 Google Scholar
  4. 4.
    Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA, Suarez Duran HG, de Los Santos ELC, Kim HU, Nave M, Dickschat JS, Mitchell DA, Shelest E, Breitling R, Takano E, Lee SY, Weber T, Medema MH (2017) antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41.  https://doi.org/10.1093/nar/gkx319 Google Scholar
  5. 5.
    Brook MD, Currie B, Desmarchelier PM (1997) Isolation and identification of Burkholderia pseudomallei from soil using selective culture techniques and the polymerase chain reaction. J Appl Microbiol 82:589–596.  https://doi.org/10.1111/j.1365-2672.1997.tb03589.x Google Scholar
  6. 6.
    Chen W-M, de Faria SM, Chou J-H, James EK, Elliott GN, Sprent JI, Bontemps C, Young JPW, Vandamme P (2008) Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia. Int J Syst Evol Microbiol 58:2174–2179.  https://doi.org/10.1099/ijs.0.65816-0 Google Scholar
  7. 7.
    Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421.  https://doi.org/10.1016/j.cell.2014.06.034 Google Scholar
  8. 8.
    Crüsemann M, O’Neill EC, Larson CB, Melnik AV, Floros DJ, da Silva RR, Jensen PR, Dorrestein PC, Moore BS (2017) Prioritizing natural product diversity in a collection of 146 bacterial strains based on growth and extraction protocols. J Nat Prod 80:588–597.  https://doi.org/10.1021/acs.jnatprod.6b00722 Google Scholar
  9. 9.
    Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846.  https://doi.org/10.1099/ijsem.0.001065 Google Scholar
  10. 10.
    Duncan KR, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, Wang M, Bandeira N, Moore BS, Dorrestein PC, Jensen PR (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22:460–471.  https://doi.org/10.1016/j.chembiol.2015.03.010 Google Scholar
  11. 11.
    Esmaeel Q, Pupin M, Jacques P, Leclère V (2017) Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environ Sci Pollut Res Int. 5:25.  https://doi.org/10.1007/s11356-017-9166-3 Google Scholar
  12. 12.
    Estrada-De Los Santos P, Bustillos-Cristales R, Caballero-Mellado J (2001) Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798.  https://doi.org/10.1128/AEM.67.6.2790-2798.2001 Google Scholar
  13. 13.
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M (2018) An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 9:2478.  https://doi.org/10.1038/s41467-018-04955-6 Google Scholar
  14. 14.
    Francis A, Aiyar S, Yean CY, Naing L, Ravichandran M (2006) An improved selective and differential medium for the isolation of Burkholderia pseudomallei from clinical specimens. Diagn Microbiol Infect Dis 55:95–99.  https://doi.org/10.1016/j.diagmicrobio.2005.11.008 Google Scholar
  15. 15.
    Franke J, Ishida K, Hertweck C (2012) Genomics-driven discovery of burkholderic acid, a noncanonical, cryptic polyketide from human pathogenic Burkholderia species. Angew Chem Int Ed Engl 51:11611–11615.  https://doi.org/10.1002/anie.201205566 Google Scholar
  16. 16.
    Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O (2017) Secondary compound hypothesis revisited: selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep 7:8406.  https://doi.org/10.1038/s41598-017-07760-1 Google Scholar
  17. 17.
    Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389.  https://doi.org/10.1007/s10295-010-0882-7 Google Scholar
  18. 18.
    Glass MB, Beesley CA, Wilkins PP, Hoffmaster AR (2009) Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Am J Trop Med Hyg 80:1023–1028Google Scholar
  19. 19.
    Gong G, Lee SM, Woo HM, Park TH, Um Y (2017) Influences of media compositions on characteristics of isolated bacteria exhibiting lignocellulolytic activities from various environmental sites. Appl Biochem Biotechnol 183:931–942.  https://doi.org/10.1007/s12010-017-2474-8 Google Scholar
  20. 20.
    Goodyear A, Strange L, Rholl DA, Silisouk J, Dance DAB, Schweizer HP, Dow S (2013) An improved selective culture medium enhances the isolation of Burkholderia pseudomallei from contaminated specimens. Am J Trop Med Hyg 89:973–982.  https://doi.org/10.4269/ajtmh.13-0119 Google Scholar
  21. 21.
    Grant MA, Holt JG (1977) Medium for the selective isolation of members of the genus Pseudomonas from natural habitats. Appl Environ Microbiol 33:1222–1224Google Scholar
  22. 22.
    Gupta A, Bedre R, Thapa SS, Sabrin A, Wang G, Dassanayake M, Grove A (2017) Global awakening of cryptic biosynthetic gene clusters in Burkholderia thailandensis. ACS Chem Biol 12:3012–3021.  https://doi.org/10.1021/acschembio.7b00681 Google Scholar
  23. 23.
    Hadjithomas M, Chen IM, Chu K, Ratner A, Palaniappan K, Szeto E, Huang J, Reddy TB, Cimermančič P, Fischbach MA, Ivanova NN, Markowitz VM, Kyrpides NC, Pati A (2015) IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. MBio 6:e00932.  https://doi.org/10.1128/mBio.00932-15 Google Scholar
  24. 24.
    He H, Ratnayake AS, Janso JE, He M, Yang HY, Loganzo F, Shor B, O’Donnell CJ, Koehn FE (2014) Cytotoxic spliceostatins from Burkholderia sp. and their semisynthetic analogues. J Nat Prod 77:1864–1870.  https://doi.org/10.1021/np500342m Google Scholar
  25. 25.
    Henry D, Campbell M, McGimpsey C, Clarke A, Louden L, Burns JL, Roe MH, Vandamme P, Speert D (1999) Comparison of isolation media for recovery of Burkholderia cepacia complex from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 37:1004–1007Google Scholar
  26. 26.
    Henry DA, Campbell ME, LiPuma JJ, Speert DP (1997) Identification of Burkholderia cepacia isolates from patients with cystic fibrosis and use of a simple new selective medium. J Clin Microbiol 35:614–619Google Scholar
  27. 27.
    Hermenau R, Ishida K, Gama S, Hoffmann B, Pfeifer-Leeg M, Plass W, Mohr JF, Wichard T, Saluz H-P, Hertweck C (2018) Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system. Nat Chem Biol 14:841–843.  https://doi.org/10.1038/s41589-018-0101-9 Google Scholar
  28. 28.
    Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, Gerth K, Steinmetz H, Müller R (2018) Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun 9:803.  https://doi.org/10.1038/s41467-018-03184-1 Google Scholar
  29. 29.
    Hover BM, Kim S-H, Katz M, Charlop-Powers Z, Owen JG, Ternei MA, Maniko J, Estrela AB, Molina H, Park S, Perlin DS, Brady SF (2018) Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat Microbiol 3:415–422.  https://doi.org/10.1038/s41564-018-0110-1 Google Scholar
  30. 30.
    Howard K, Inglis TJJ (2003) Novel selective medium for isolation of Burkholderia pseudomallei. J Clin Microbiol 41:3312–3316.  https://doi.org/10.1128/JCM.41.7.3312-3316.2003 Google Scholar
  31. 31.
    Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877.  https://doi.org/10.1101/gr.9.9.868 Google Scholar
  32. 32.
    Imhoff JF (2005) Enterobacteriales. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, Boone DR, De Vos P, Goodfellow M, Rainey FA, Schleifer K-H (eds) Bergey’s manual® of systematic bacteriology. Springer, US, pp 587–850Google Scholar
  33. 33.
    Katz M, Hover BM, Brady SF (2016) Culture-independent discovery of natural products from soil metagenomes. J Ind Microbiol Biotechnol 43:129–141.  https://doi.org/10.1007/s10295-015-1706-6 Google Scholar
  34. 34.
    Kawanishi T, Shiraishi T, Okano Y, Sugawara K, Hashimoto M, Maejima K, Komatsu K, Kakizawa S, Yamaji Y, Hamamoto H, Oshima K, Namba S (2011) New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints. PLoS ONE 6:e16512.  https://doi.org/10.1371/journal.pone.0016512 Google Scholar
  35. 35.
    Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Hughes D, Zhang L (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458.  https://doi.org/10.1007/s00253-003-1381-9 Google Scholar
  36. 36.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 Google Scholar
  37. 37.
    Lee DW, Lee H, Lee AH, Kwon B-O, Khim JS, Yim UH, Kim BS, Kim J-J (2018) Microbial community composition and PAHs removal potential of indigenous bacteria in oil contaminated sediment of Taean coast, Korea. Environ Pollut 234:503–512.  https://doi.org/10.1016/j.envpol.2017.11.097 Google Scholar
  38. 38.
    Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245.  https://doi.org/10.1093/nar/gkw290 Google Scholar
  39. 39.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459.  https://doi.org/10.1038/nature14098 Google Scholar
  40. 40.
    LiPuma JJ (2005) Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 11:528–533.  https://doi.org/10.1097/01.mcp.0000181475.85187.ed Google Scholar
  41. 41.
    LiPuma JJ, Dulaney BJ, McMenamin JD, Whitby PW, Stull TL, Coenye T, Vandamme P (1999) Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol 37:3167–3170Google Scholar
  42. 42.
    Liu X, Cheng Y-Q (2014) Genome-guided discovery of diverse natural products from Burkholderia sp. J Ind Microbiol Biotechnol 41:275–284.  https://doi.org/10.1007/s10295-013-1376-1 Google Scholar
  43. 43.
    Maansson M, Vynne NG, Klitgaard A, Nybo JL, Melchiorsen J, Nguyen DD, Sanchez LM, Ziemert N, Dorrestein PC, Andersen MR, Gram L (2016) An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. mSystems. 25:55.  https://doi.org/10.1128/msystems.00028-15 Google Scholar
  44. 44.
    Mahenthiralingam E, Song L, Sass A, White J, Wilmot C, Marchbank A, Boaisha O, Paine J, Knight D, Challis GL (2011) Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria Genomic Island. Chem Biol 18:665–677.  https://doi.org/10.1016/j.chembiol.2011.01.020 Google Scholar
  45. 45.
    Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156.  https://doi.org/10.1038/nrmicro1085 Google Scholar
  46. 46.
    Mao D, Bushin LB, Moon K, Wu Y, Seyedsayamdost MR (2017) Discovery of scmR as a global regulator of secondary metabolism and virulence in Burkholderia thailandensis E264. Proc Natl Acad Sci USA 114:E2920–E2928.  https://doi.org/10.1073/pnas.1619529114 Google Scholar
  47. 47.
    Marmann A, Aly AH, Lin W, Wang B, Proksch P (2014) Co-cultivation–a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065.  https://doi.org/10.3390/md12021043 Google Scholar
  48. 48.
    Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, Cruz-Morales P, Duddela S, Düsterhus S, Edwards DJ, Fewer DP, Garg N, Geiger C, Gomez-Escribano JP, Greule A, Hadjithomas M, Haines AS, Helfrich EJN, Hillwig ML, Ishida K, Jones AC, Jones CS, Jungmann K, Kegler C, Kim HU, Kötter P, Krug D, Masschelein J, Melnik AV, Mantovani SM, Monroe EA, Moore M, Moss N, Nützmann H-W, Pan G, Pati A, Petras D, Reen FJ, Rosconi F, Rui Z, Tian Z, Tobias NJ, Tsunematsu Y, Wiemann P, Wyckoff E, Yan X, Yim G, Yu F, Xie Y, Aigle B, Apel AK, Balibar CJ, Balskus EP, Barona-Gómez F, Bechthold A, Bode HB, Borriss R, Brady SF, Brakhage AA, Caffrey P, Cheng Y-Q, Clardy J, Cox RJ, De Mot R, Donadio S, Donia MS, van der Donk WA, Dorrestein PC, Doyle S, Driessen AJM, Ehling-Schulz M, Entian K-D, Fischbach MA, Gerwick L, Gerwick WH, Gross H, Gust B, Hertweck C, Höfte M, Jensen SE, Ju J, Katz L, Kaysser L, Klassen JL, Keller NP, Kormanec J, Kuipers OP, Kuzuyama T, Kyrpides NC, Kwon H-J, Lautru S, Lavigne R, Lee CY, Linquan B, Liu X, Liu W, Luzhetskyy A, Mahmud T, Mast Y, Méndez C, Metsä-Ketelä M, Micklefield J, Mitchell DA, Moore BS, Moreira LM, Müller R, Neilan BA, Nett M, Nielsen J, O’Gara F, Oikawa H, Osbourn A, Osburne MS, Ostash B, Payne SM, Pernodet J-L, Petricek M, Piel J, Ploux O, Raaijmakers JM, Salas JA, Schmitt EK, Scott B, Seipke RF, Shen B, Sherman DH, Sivonen K, Smanski MJ, Sosio M, Stegmann E, Süssmuth RD, Tahlan K, Thomas CM, Tang Y, Truman AW, Viaud M, Walton JD, Walsh CT, Weber T, van Wezel GP, Wilkinson B, Willey JM, Wohlleben W, Wright GD, Ziemert N, Zhang C, Zotchev SB, Breitling R, Takano E, Glöckner FO (2015) Minimum Information about a Biosynthetic Gene cluster. Nat Chem Biol 11:625–631.  https://doi.org/10.1038/nchembio.1890 Google Scholar
  49. 49.
    Miller SCM, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758.  https://doi.org/10.1128/AEM.68.8.3750-3758.2002 Google Scholar
  50. 50.
    Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, Kanigan T, Lewis K, Epstein SS (2010) Use of Ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76:2445–2450.  https://doi.org/10.1128/AEM.01754-09 Google Scholar
  51. 51.
    Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34.  https://doi.org/10.1093/nar/28.1.27 Google Scholar
  52. 52.
    Okada BK, Wu Y, Mao D, Bushin LB, Seyedsayamdost MR (2016) Mapping the trimethoprim-induced secondary metabolome of Burkholderia thailandensis. ACS Chem Biol 11:2124–2130.  https://doi.org/10.1021/acschembio.6b00447 Google Scholar
  53. 53.
    Pallud C, Viallard V, Balandreau J, Normand P, Grundmann G (2001) Combined use of a specific probe and PCAT medium to study Burkholderia in soil. J Microbiol Methods 47:25–34.  https://doi.org/10.1016/S0167-7012(01)00287-1 Google Scholar
  54. 54.
    Parkins MD, Floto RA (2015) Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 14:293–304.  https://doi.org/10.1016/j.jcf.2015.03.012 Google Scholar
  55. 55.
    Parte AC (2018) LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 68:1825–1829.  https://doi.org/10.1099/ijsem.0.002786 Google Scholar
  56. 56.
    Patel AB, Mahala K, Jain K, Madamwar D (2018) Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs). Bioresour Technol 253:288–296.  https://doi.org/10.1016/j.biortech.2018.01.049 Google Scholar
  57. 57.
    Peacock SJ, Chieng G, Cheng AC, Dance DAB, Amornchai P, Wongsuvan G, Teerawattanasook N, Chierakul W, Day NPJ, Wuthiekanun V (2005) Comparison of Ashdown’s medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei. J Clin Microbiol 43:5359–5361.  https://doi.org/10.1128/JCM.43.10.5359-5361.2005 Google Scholar
  58. 58.
    Peeters C, Depoorter E, Praet J, Vandamme P (2016) Extensive cultivation of soil and water samples yields various pathogens in patients with cystic fibrosis but not Burkholderia multivorans. J Cyst Fibros 15:769–775.  https://doi.org/10.1016/j.jcf.2016.02.014 Google Scholar
  59. 59.
    Pidot SJ, Coyne S, Kloss F, Hertweck C (2014) Antibiotics from neglected bacterial sources. Int J Med Microbiol 304:14–22.  https://doi.org/10.1016/j.ijmm.2013.08.011 Google Scholar
  60. 60.
    Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606.  https://doi.org/10.1073/pnas.1614680114 Google Scholar
  61. 61.
    Qiu D, Ruan J, Huang Y (2008) Selective isolation and rapid identification of members of the genus Micromonospora. Appl Environ Microbiol 74:5593–5597.  https://doi.org/10.1128/AEM.00303-08 Google Scholar
  62. 62.
    Ramette A, LiPuma JJ, Tiedje JM (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 71:1193–1201.  https://doi.org/10.1128/AEM.71.3.1193-1201.2005 Google Scholar
  63. 63.
    Salles JF, Samyn E, Vandamme P, van Veen JA, van Elsas JD (2006) Changes in agricultural management drive the diversity of Burkholderia species isolated from soil on PCAT medium. Soil Biol Biochem 38:661–673.  https://doi.org/10.1016/j.soilbio.2005.06.018 Google Scholar
  64. 64.
    Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429.  https://doi.org/10.3389/fgene.2014.00429 Google Scholar
  65. 65.
    Schönmann S, Loy A, Wimmersberger C, Sobek J, Aquino C, Vandamme P, Frey B, Rehrauer H, Eberl L (2009) 16S rRNA gene-based phylogenetic microarray for simultaneous identification of members of the genus Burkholderia. Environ Microbiol 11:779–800.  https://doi.org/10.1111/j.1462-2920.2008.01800.x Google Scholar
  66. 66.
    Seyedsayamdost MR (2014) High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci USA 111:7266–7271.  https://doi.org/10.1073/pnas.1400019111 Google Scholar
  67. 67.
    Seyedsayamdost MR, Chandler JR, Blodgett JAV, Lima PS, Duerkop BA, Oinuma K-I, Greenberg EP, Clardy J (2010) Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org Lett 12:716–719.  https://doi.org/10.1021/ol902751x Google Scholar
  68. 68.
    Song L, Jenner M, Masschelein J, Jones C, Bull MJ, Harris SR, Hartkoorn RC, Vocat A, Romero-Canelon I, Coupland P, Webster G, Dunn M, Weiser R, Paisey C, Cole ST, Parkhill J, Mahenthiralingam E, Challis GL (2017) Discovery and biosynthesis of gladiolin: a Burkholderia gladioli antibiotic with promising activity against Mycobacterium tuberculosis. J Am Chem Soc 139:7974–7981.  https://doi.org/10.1021/jacs.7b03382 Google Scholar
  69. 69.
    Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L (2014) Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol 16:1503–1512.  https://doi.org/10.1111/1462-2920.12211 Google Scholar
  70. 70.
    Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266.  https://doi.org/10.1007/s00248-011-9929-1 Google Scholar
  71. 71.
    Tago K, Itoh H, Kikuchi Y, Hori T, Sato Y, Nagayama A, Okubo T, Navarro R, Aoyagi T, Hayashi K, Hayatsu M (2014) A fine-scale phylogenetic analysis of free-living Burkholderia species in sugarcane field soil. Microbes Environ 29:434–437.  https://doi.org/10.1264/jsme2.ME14122 Google Scholar
  72. 72.
    Tago K, Okubo T, Itoh H, Kikuchi Y, Hori T, Sato Y, Nagayama A, Hayashi K, Ikeda S, Hayatsu M (2015) Insecticide-degrading Burkholderia symbionts of the stinkbug naturally occupy various environments of sugarcane fields in a Southeast island of Japan. Microbes Environ 30:29–36.  https://doi.org/10.1264/jsme2.ME14124 Google Scholar
  73. 73.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526.  https://doi.org/10.1093/oxfordjournals.molbev.a040023 Google Scholar
  74. 74.
    Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO III, Mesbah M, Youssef D, Khalifa S, Schmidt EW (2010) Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org Lett 12:664–666.  https://doi.org/10.1021/ol9029269 Google Scholar
  75. 75.
    Thijs S, Weyens N, Sillen W, Gkorezis P, Carleer R, Vangronsveld J (2014) Potential for plant growth promotion by a consortium of stress-tolerant 2,4-dinitrotoluene-degrading bacteria: isolation and characterization of a military soil. Microb Biotechnol 7:294–306.  https://doi.org/10.1111/1751-7915.12111 Google Scholar
  76. 76.
    Tokiwa Y, Kawabata G, Jarerat A (2001) A modified method for isolating poly(vinyl alcohol)-degrading bacteria and study of their degradation patterns. Biotechnol Lett 23:1937–1941.  https://doi.org/10.1023/A:1013785817554 Google Scholar
  77. 77.
    Trung TT, Hetzer A, Topfstedt E, Göhler A, Limmathurotsakul D, Wuthiekanun V, Peacock SJ, Steinmetz I (2011) Improved culture-based detection and quantification of Burkholderia pseudomallei from soil. Trans R Soc Trop Med Hyg 105:346–351.  https://doi.org/10.1016/j.trstmh.2011.03.004 Google Scholar
  78. 78.
    Vermis K, Brachkova M, Vandamme P, Nelis H (2003) Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 26:595–600.  https://doi.org/10.1078/072320203770865909 Google Scholar
  79. 79.
    Vermis K, Vandamme PAR, Nelis HJ (2003) Burkholderia cepacia complex genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective media. J Appl Microbiol 95:1191–1199.  https://doi.org/10.1046/j.1365-2672.2003.02054.x Google Scholar
  80. 80.
    Wang C, Flemming CJ, Cheng Y-Q (2012) Discovery and activity profiling of thailandepsins A through F, potent histone deacetylase inhibitors, from Burkholderia thailandensis E264. Medchemcomm 3:976–981.  https://doi.org/10.1039/C2MD20024D Google Scholar
  81. 81.
    Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes F-J, Cheng Y-Q (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74:2031–2038.  https://doi.org/10.1021/np200324x Google Scholar
  82. 82.
    Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243.  https://doi.org/10.1093/nar/gkv437 Google Scholar
  83. 83.
    Weiland-Bräuer N, Fischer MA, Schramm K-W, Schmitz RA (2017) Polychlorinated biphenyl (PCB)-degrading potential of microbes present in a cryoconite of Jamtalferner Glacier. Front Microbiol 8:1105.  https://doi.org/10.3389/fmicb.2017.01105 Google Scholar
  84. 84.
    Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31.  https://doi.org/10.1016/j.cbpa.2010.10.020 Google Scholar
  85. 85.
    Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR (2014) Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci USA 111:E1130–E1139.  https://doi.org/10.1073/pnas.1324161111 Google Scholar
  86. 86.
    Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE 7:e34064.  https://doi.org/10.1371/journal.pone.0034064 Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2019

Authors and Affiliations

  1. 1.Department of ChemistrySimon Fraser UniversityBurnabyCanada
  2. 2.Chemistry Institute of Federal University of AlfenasAlfenasBrazil

Personalised recommendations