GPS Solutions

, 23:18 | Cite as

Single-frequency precise point positioning (PPP) for retrieving ionospheric TEC from BDS B1 data

  • Min Li
  • Baocheng ZhangEmail author
  • Yunbin Yuan
  • Chuanbao Zhao
Original Article


The customary approach to determine ionospheric total electron content (TEC) with BeiDou navigations satellite system (BDS) data normally requires dual-frequency (DF) data provided by geodetic-grade receivers. In this study, we present an analysis of the performance of a new TEC estimation procedure based on single-frequency (SF) BDS data. First, the ionospheric observable is retrieved from the SF BDS code and phase data using precise point positioning (PPP) instead of the carrier-to-code leveling (CCL) technique used in the customary DF method. Then, the absolute ionospheric slant TEC (STEC) values are isolated from the ionospheric observables by modeling the ionospheric observable with the adjusted spherical harmonic (ASH) expansion and constraining the satellite differential code bias (SDCB) to very precise values provided externally. The experimental data were taken from the multi-GNSS experiment (MGEX) network for high and low sunspot periods, covering the 2 months, i.e., December 2014 and September 2017. The TEC data obtained from the combined final global ionospheric map (GIM) provided by the international GNSS service (IGS), the JASON DF altimeter, and the BDS-measured differential STEC (dSTEC) are used as reference data to evaluate the performance of the TEC values estimated by the proposed method. The evaluation results indicate that compared to the reference TEC data, the ionospheric TEC estimated by the proposed method using BDS B1 data and the customary CCL-based DF method based on BDS B1 + B2 data, perform at roughly equal levels.


BeiDou navigation satellite system (BDS) Single frequency (SF) Total electron content (TEC) Precise point positioning (PPP) Satellite differential code biases (SDCBs) Carrier-to-code leveling (CCL) 



Many thanks are due to the IGS for providing access to the Multi-GNSS Experiment (MGEX) data, the ionospheric GIM products, and the differential code bias (DCB) products. This work was supported by the National Key Research Program of China “Collaborative Precision Positioning Project” (No. 2016YFB0501900) and China Natural Science Funds (41604031, 41774042 and 41621091). The second author is supported by the CAS Pioneer Hundred Talents Program. The third author is supported by LU JIAXI International team program supported by the K.C. Wong Education Foundation and CAS.


  1. Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geod 83(8):773–785CrossRefGoogle Scholar
  2. Brunini C, Azpilicueta F (2010) GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J Geod 84(5):293–304CrossRefGoogle Scholar
  3. Brunini C, Meza A, Bosch W (2005) Temporal and spatial variability of the bias between TOPEX-and GPS-derived total electron content. J Geod 79(4–5):175–188CrossRefGoogle Scholar
  4. Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geod 81(2):111–120CrossRefGoogle Scholar
  5. Feltens J, Schaer S (1998) IGS Products for the Ionosphere, IGS Position Paper. In: Proceedings of the IGS analysis centers workshop, ESOC, Darmstadt, Germany, February 9–11, pp 225–232Google Scholar
  6. Feltens J, Angling M, Jackson-Booth N, Jakowski N, Hoque M, Hernández-Pajares M, Aragón-Àngel A, Orús R, Zandbergen R (2011) Comparative testing of four ionospheric models driven with GPS measurements. Radio Sci 46 (RS0D2):1–11CrossRefGoogle Scholar
  7. Guo J, Xu X, Zhao Q, Liu J (2016) Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J Geod 90(2):143–159CrossRefGoogle Scholar
  8. Hernandez-Pajares M, Juan JM, Sanz J (1999) New approaches in global ionospheric determination using ground GPS data. J Atmos Sol Terr Phys 61(16):1237–1247CrossRefGoogle Scholar
  9. Hernandez-Pajares M, Miguel Juan J, Sanz J, Aragon-Angel A, Garcia-Rigo A, Salazar D, Escudero M (2011) The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J Geod 85(12):887–907CrossRefGoogle Scholar
  10. Hernández-Pajares M, Juan JM, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer SC, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geod 83(3–4):263–275CrossRefGoogle Scholar
  11. Hernández-Pajares M, Roma-Dollase D, Krankowski A, García-Rigo A, Orús-Pérez R (2017) Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J Geod 91(12):1405–1414CrossRefGoogle Scholar
  12. Jee G, Lee HB, Kim YH, Chung JK, Cho J (2010) Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J Geophys Res Space Phys 115(A10319):1–11Google Scholar
  13. Komjathy A, Sparks L, Wilson BD, Mannucci AJ (2005) Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms. Radio Sci 40(RS6006):1–7Google Scholar
  14. Krankowski A, Kosek W, Baran L, Popinski W (2005) Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes. J Atmos Sol Terr Phy 67(12):1147–1156CrossRefGoogle Scholar
  15. Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New YorkGoogle Scholar
  16. Li W, Cheng P, Bei J, Wen H, Wang H (2012) Calibration of regional ionospheric delay with uncombined precise point positioning and accuracy assessment. J Earth Syst Sci 121(4):989–999CrossRefGoogle Scholar
  17. Li M, Yuan YB, Wang NB, Li ZS, Li Y, Huo XL (2017a) Estimation and analysis of Galileo differential code biases. J Geod 91(3):279–293CrossRefGoogle Scholar
  18. Li W, Nadarajah N, Teunissen PJG, Khodabandeh A, Chai YJ (2017b) Array-Aided Single-Frequency State-Space RTK with Combined GPS, Galileo, IRNSS, and QZSS L5/E5a Observations. J Surv Eng 143(4):04017006CrossRefGoogle Scholar
  19. Li M, Yuan Y, Zhang B, Wang N, Li Z, Liu X, Zhang X (2018a) Determination of the optimized single-layer ionospheric height for electron content measurements over China. J Geod 92(2):169–183CrossRefGoogle Scholar
  20. Li M, Yuan Y, Wang N, Liu T, Chen Y (2018b) Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps. J Geod 92(8):889–903CrossRefGoogle Scholar
  21. Liu T, Yuan Y, Zhang B, Wang N, Tan B, Chen Y (2016) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geod 91(3):253–268CrossRefGoogle Scholar
  22. Liu T, Zhang B, Yuan Y, Li M (2018) Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J Geod 92(11):1267–1283CrossRefGoogle Scholar
  23. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  24. Montenbruck O, Steigenberger P (2013) The BeiDou navigation message. J Glob Position Syst 12(1):1–12CrossRefGoogle Scholar
  25. Montenbruck O, Hauschild A, Steigenberger P (2014) Differential code bias estimation using Multi-GNSS observations and global ionosphere maps. Navigation 61(3):191–201CrossRefGoogle Scholar
  26. Odijk D, Zhang B, Khodabandeh A, Odolinski R, Teunissen PJ (2016) On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J Geod 90(1):15–44CrossRefGoogle Scholar
  27. Orus R, Cander LR, Hernandez-Pajares M (2007) Testing regional vertical total electron content maps over Europe during the 17–21 January 2005 sudden space weather event. Radio Sci 42(RS3002):1–12Google Scholar
  28. Schaer S (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Doctoral dissertation, Univ. Bern, SwitzerlandGoogle Scholar
  29. Schueler T, Oladipo OA (2014) Single-frequency single-site VTEC retrieval using the NeQuick2 ray tracer for obliquity factor determination. GPS Solut 18(1):115–122CrossRefGoogle Scholar
  30. Schueler T, Oladipo OA (2013) Single-frequency GNSS retrieval of vertical total electron content (VTEC) with GPS L1 and Galileo E5 measurements. J Space Weather Space Clim 3:(A11)CrossRefGoogle Scholar
  31. Shu B, Liu H, Xu L, Gong X, Qian C, Zhang M, Zhang R (2016) Analysis of satellite-induced factors affecting the accuracy of the BDS satellite differential code bias. GPS Sol 21(3):905–916CrossRefGoogle Scholar
  32. Wang N, Yuan Y, Li Z, Huo X (2016a) Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv Space Res 57(7):1555–1569CrossRefGoogle Scholar
  33. Wang N, Yuan Y, Li Z, Montenbruck O, Tan B (2016b) Determination of differential code biases with multi-GNSS observations. J Geod 90(3):209–228CrossRefGoogle Scholar
  34. Wang N, Yuan Y, Li Z, Li Y, Huo X, Li M (2017) An examination of the Galileo NeQuick model: comparison with GPS and JASON TEC. GPS Solut 21(2):605–615CrossRefGoogle Scholar
  35. Wu S, Peck S, Schempp T, Shloss P, Wan H, Buckner P, Doherty P, Angus J (2006) A single frequency approach to mitigation of ionospheric depletion events for SBAS in equatorial regions. In: Proc. ION GNSS 2006, Institute of Navigation, Fort Worth, Texas USA, September 26–29, pp 939–952Google Scholar
  36. Yuan Y, Ou J (2001) An improvement to ionospheric delay correction for single-frequency GPS users—the APR-I scheme. J Geod 75(5–6):331–336CrossRefGoogle Scholar
  37. Yuan Y, Li Z, Wang N, Zhang B, Li H, Li M, Huo X, Ou J (2015) Monitoring the ionosphere based on the Crustal Movement Observation Network of China. Geodesy Geodyn 6(2):73–80CrossRefGoogle Scholar
  38. Zhang B (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51(7):972–988CrossRefGoogle Scholar
  39. Zhang BC, Ou JK, Yuan YB, Li ZS (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China-Earth Sci 55(11):1919–1928CrossRefGoogle Scholar
  40. Zhang B, Teunissen PJG, Yuan Y, Zhang H, Li M (2017) Joint estimation of vertical total electron content (VTEC) and satellite differential code biases (SDCBs) using low-cost receivers. J Geod 92(4):401–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Geodesy and Earth’s DynamicsInstitute of Geodesy and GeophysicsWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations