Advertisement

GPS Solutions

, 23:19 | Cite as

Validation results of maximum S4 index in F-layer derived from GNOS on FY3C satellite

  • Weihua Bai
  • Yueqiang Sun
  • Junming XiaEmail author
  • Guangyuan Tan
  • Cheng Cheng
  • Guanglin Yang
  • Qifei Du
  • Xianyi Wang
  • Danyang Zhao
  • Yusen Tian
  • Xiaoxin Zhang
  • Mi Liao
  • Yan Liu
  • Xiangguang Meng
  • Congliang Liu
  • Yuerong Cai
  • Dongwei Wang
Original Article
  • 141 Downloads

Abstract

The first Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) compatible with both BeiDou Navigation Satellite System (BDS) and Global Positioning System was successfully launched into orbit on September 23, 2013, which was mounted on the FengYun-3C (FY3C) satellite. FY3C/GNOS has produced a lot of ionospheric radio occultation (RO) scintillation data until now. This work was conducted to verify the accuracy of the scintillation data observed by FY3C/GNOS for monitoring of the GNSS signal attenuation and early warning of the possible GNSS signal interruption, thus laying the foundation for research on ionospheric space weather. In this work, the ionospheric F-layer maximum scintillation indexes S4 (\(S4_{{{\text{max}}}}^{{\text{F}}}\)) probed by FY3C/GNOS and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) are matched into data pairs by data matching criterions during January 10, 2014 and January 9, 2015, which allow the comparison and error analysis of \(S4_{{{\text{max}}}}^{{\text{F}}}\) indexes between FY3C/GNOS and COSMIC. We find that FY3C/GNOS overestimates the \(S4_{{{\text{max}}}}^{{\text{F}}}\) data compared to that of COSMIC, and the biases and standard deviations (Stds) of the differences between the two \(S4_{{{\text{max}}}}^{{\text{F}}}\) indexes (FY3C/GNOS-COSMIC) in data pairs are 0.004 and 0.063 in the whole day, 0.007 and 0.080 at nighttime, 0.001 and 0.046 at daytime, respectively. The statistical error results verify the precision consistency of the ionospheric RO scintillation data between FY3C/GNOS and COSMIC. The errors at nighttime are larger than those in the whole day and daytime, which is probably due to time-varying ionospheric irregularities after midnight and disparity of the data matching criterions. Since the deployment of FY3 series satellites, GNOS can contribute more scintillation data to the international ionospheric research and forecasting of ionospheric space weather.

Keywords

FY3C satellite Radio occultation sounder Ionospheric scintillation S4 index 

Notes

Acknowledgements

We thank CDAAC team for providing the COSMIC ionospheric scintillation data. This research was supported by the National Natural Science Foundation of China (Grant Nos. 41405040, 41775034, 41405039, 41505030 and 41606206), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA15007501), the Scientific Research Project of the Chinese Academy of Sciences (Grant No. YZ201129), the Feng Yun 3 (FY-3) Global Navigation Satellite System Occultation Sounder (GNOS) development and manufacture project led by NSSC, CAS (Grant Nos. 2017YFB0502800 and 2017YFB0502802) and the Special Fund for Public Welfare Industry (meteorology) (Grant Nos. GYHY201006048, GYHY201306063).

References

  1. Bai WH, Sun YQ, Du QF, Yang GL, Yang ZD, Zhang P, Bi YM, Wang XY, Cheng C, Han Y (2014) An introduction to the FY3 GNOS instrument and mountain-top tests. Atmos Meas Tech 7(6):1817–1823.  https://doi.org/10.5194/amt-7-1817-2014 CrossRefGoogle Scholar
  2. Bartels J, Heck NH, Johnston HF (1939) The three-hour-range index measuring geomagnetic activity. J Geophys Res 44(4):411–454.  https://doi.org/10.1029/TE044i004p00411 CrossRefGoogle Scholar
  3. Basu S, MacKenzie E, Basu S (1988) Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci 23(03):363–378.  https://doi.org/10.1029/rs023i003p00363 CrossRefGoogle Scholar
  4. Briggs BH, Parkin IA (1963) On the variation of radio star and satellite scintillations with zenith angle. J Atmos Terr Phys 25(6):339–366.  https://doi.org/10.1016/0021-9169(63)90150-8 CrossRefGoogle Scholar
  5. Burke WJ, Beaujardière ODL, Gentile LC, Hunton DE, Pfaff RF, Roddy PA, Su YJ, Wilson GR (2009) C/NOFS observations of plasma density and electric field irregularities at post-midnight local times. Geophys Res Lett 36(18):L00C09.  https://doi.org/10.1029/2009GL038879 CrossRefGoogle Scholar
  6. Cai YR, Bai WH, Wang XY, Sun YQ, Du QF, Zhao DY, Meng XG, Liu CL, Xia JM, Wang DW et al (2017) In-orbit performance of GNOS on-board FY3-C and the enhancements for FY3-D satellite. Adv Space Res 60(12):2812–2821.  https://doi.org/10.1016/j.asr.2017.05.001 CrossRefGoogle Scholar
  7. Cranke RK (1977) Ionospheric scintillation. Proc IEEE 65(2):180–199.  https://doi.org/10.1109/PROC.1977.10456 CrossRefGoogle Scholar
  8. Dymond KF (2012) Global observations of L band scintillation at solar minimum made by COSMIC. Radio Sci 47(4):RS0L18.  https://doi.org/10.1029/2011rs004931 CrossRefGoogle Scholar
  9. Gubenko VN, Pavelyev AG, Kirillovich IA, Liou YA (2018) Case study of inclined sporadic E layers in the Earth’s ionosphere observed by CHAMP/GPS radio occultations: coupling between the tilted plasma layers and internal waves. Adv Space Res 61(7):1702–1716.  https://doi.org/10.1016/j.asr.2017.10.001 CrossRefGoogle Scholar
  10. Hu L, Ning B, Liu L, Zhao B, Li G, Wu B, Huang Z, Hao X, Chang S, Wu Z (2014) Validation of COSMIC ionospheric peak parameters by the measurements of an ionosonde chain in China. Ann Geophys 32(10):1311–1319.  https://doi.org/10.5194/angeo-32-1311-2014 CrossRefGoogle Scholar
  11. Liu JY, Chen SP, Yeh WH, Tsai HF, Rajesh PK (2016) Worst-Case GPS scintillations on the ground estimated from radio occultation observations of FORMOSAT-3/COSMIC during 2007–2014. Surv Geophys 37(4):791–809.  https://doi.org/10.1007/s10712-015-9355-x CrossRefGoogle Scholar
  12. Pavelyev AG, Liou YA, Zhang K, Wang CS, Wickert J, Schmidt T, Gubenko VN, Pavelyev AA, Kuleshov Y (2012) Identification and localization of layers in the ionosphere using the eikonal and amplitude of radio occultation signals. Atmos Meas Tech 5:1–16.  https://doi.org/10.5194/amt-5-1-2012 CrossRefGoogle Scholar
  13. Pavelyev A, Liou YA, Matyugov SS, Pavelyev AA, Gubenko VN, Zhang K, Kuleshov Y (2015) Application of the locality principle to radio occultation studies of the Earth’s atmosphere and ionosphere. Atmos Meas Tech 8(7):2885–2899.  https://doi.org/10.5194/amt-8-2885-2015 CrossRefGoogle Scholar
  14. Romero R, Linty N, Dovis F, Field RV (2016) A novel approach to ionospheric scintillation detection based on an open loop architecture. In: Proceedings of the 2016 8th ESA workshop on satellite navigation technologies and European workshop on GNSS signals and signal processing (NAVITEC), Noordwijk.  https://doi.org/10.1109/NAVITEC.2016.7931741
  15. She LL, Bai WH, Sun YQ, Tian YS, Meng XG, Du QF, Xia JM, Zhao DY, Liu CL, Wang XY et al (2017) Error analysis on nmf2 and hmf2 parameters of IRI-2016 ionospheric model during magnetically quiet periods. J Wuhan Univ (Nat Sci Ed) 63(3):189–198.  https://doi.org/10.14188/j.1671-8836.2017.03.001 CrossRefGoogle Scholar
  16. Straus PR, Anderson PC, Danaher JE (2003) GPS occultation sensor observations of ionospheric scintillation. Geophys Res Lett.  https://doi.org/10.1029/2002gl016503 CrossRefGoogle Scholar
  17. Tsai LC, Su SY, Liu CH (2017) Global morphology of ionospheric F-layer scintillations using FS3/COSMIC GPS radio occultation data. GPS Solut 21(3):2037–2048.  https://doi.org/10.1007/s10291-016-0591-4 CrossRefGoogle Scholar
  18. Wang SZ, Zhu GW, Bai WH, Liu CL, Sun YQ, Du QF, Wang XY, Meng XG, Yang GL, Yang ZD et al (2015) For the first time Fengyun3 C Satellite-global navigation satellite system occultation sounder achieved spaceborne Bei Dou system radio occultation. Acta Phys Sin 64(8):89301.  https://doi.org/10.7498/aps.64.089301 CrossRefGoogle Scholar
  19. Xu WY (2008) Physics of electromagnetic phenomena of the Earth. Hefei, AnhuiGoogle Scholar
  20. Yang GL, Sun YQ, Bai WH, Zhang XX, Liu CL, Meng XG, Bi YM, Wang DW, Zhao DY (2018) Validation results of nmf2 and hmf2 derived from ionospheric density profiles of GNOS on FY3C satellite. Sci China Technol Sci.  https://doi.org/10.1007/s11431-017-9157-6 CrossRefGoogle Scholar
  21. Yu X, Yue X, Zhen WM, Xu JS, Liu D, Guo S (2017) On the occurrence of F region irregularities over Haikou retrieved from COSMIC GPS radio occultation and ground-based ionospheric scintillation monitor observations. Radio Sci 52(1):34–48.  https://doi.org/10.1002/2016RS006014 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Weihua Bai
    • 1
    • 2
    • 3
    • 4
  • Yueqiang Sun
    • 1
    • 2
    • 3
    • 4
  • Junming Xia
    • 1
    • 2
    • 4
    Email author
  • Guangyuan Tan
    • 1
    • 2
    • 4
  • Cheng Cheng
    • 8
  • Guanglin Yang
    • 1
    • 6
    • 7
  • Qifei Du
    • 1
    • 2
    • 4
  • Xianyi Wang
    • 1
    • 2
    • 4
  • Danyang Zhao
    • 1
    • 2
    • 4
  • Yusen Tian
    • 1
    • 2
    • 4
  • Xiaoxin Zhang
    • 7
  • Mi Liao
    • 6
    • 7
  • Yan Liu
    • 5
  • Xiangguang Meng
    • 1
    • 2
    • 4
  • Congliang Liu
    • 1
    • 2
    • 4
  • Yuerong Cai
    • 1
    • 2
    • 4
  • Dongwei Wang
    • 1
    • 2
    • 4
  1. 1.National Space Science CenterChinese Academy of Sciences (NSSC/CAS)BeijingChina
  2. 2.Beijing Key Laboratory of Space Environment ExplorationNational Space Science CenterBeijingChina
  3. 3.School of Astronomy and Space ScienceUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Joint Laboratory on Occultations for Atmosphere and Climate (JLOAC)NSSC/CAS and University of GrazBeijingChina
  5. 5.National Meteorological CenterChina Meteorological AdministrationBeijingChina
  6. 6.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  7. 7.National Center for Space WeatherChina Meteorological AdministrationBeijingChina
  8. 8.National Intellectual Property Administration of the P.R.CBeijingChina

Personalised recommendations