GPS Solutions

, 22:54 | Cite as

Design and validation of broadcast ephemeris for low Earth orbit satellites

  • Xin Xie
  • Tao Geng
  • Qile Zhao
  • Xianglin Liu
  • Qiang Zhang
  • Jingnan Liu
Original Article
  • 246 Downloads

Abstract

Low Earth orbit (LEO) constellations have potentialities to augment global navigation satellite systems for better service performance. The prerequisite is to provide the broadcast ephemerides that meet the accuracy requirement for navigation and positioning. In this study, the Kepler ephemeris model is chosen as the basis of LEO broadcast ephemeris design for backward compatibility and simplicity. To eliminate the singularity caused by the smaller eccentricity of LEO satellites compared to MEO satellites, non-singular elements are introduced for curve fitting of parameters and then transformed to Kepler elements to assure the algorithm of ephemeris computation remains unchanged for the user. We analyze the variation characteristics of LEO orbital elements and establish suitable broadcast ephemeris models considering fit accuracy, number of parameters, fit interval, and orbital altitude. The results of the fit accuracy for different fit intervals and orbital altitudes suggest that the optimal parameter selections are \((Crs3,Crc3)\), \((Crs3,Crc3, \, \dot{a},\dot{n})\) and \(\left( {Crs3,Crc3, \, \dot{a},\dot{n}, \, \ddot{i},\ddot{a}} \right)\), i.e., adding two, four or six parameters to the GPS 16-parameter ephemeris. When adding four parameters, the fit accuracy can be improved by about one order of magnitude compared to the GPS 16-parameter ephemeris model, and fit errors of less than 10 cm can be achieved with 20-min fit interval for a 400–1400 km orbital altitude. In addition, the effects of the number of parameters, fit interval, and orbit altitude on fit accuracy are discussed in detail. The validation with four LEO satellites in orbit also confirms the effectiveness of proposed models.

Keywords

LEO satellites navigation Broadcast ephemeris Kepler ephemeris model Non-singular orbital elements Least squares curve fit 

Notes

Acknowledgements

This work is supported by the National Nature Science Foundation of China (Nos. 41674004, 41574030) and Fundamental Research Funds for the Central Universities (No. 2042016kf0185).

References

  1. Brouwer D, Clemence GM, Chako N (2005) Methods of celestial mechanics. Springer, BerlinGoogle Scholar
  2. Chen L, Jiao W, Huang X, Geng C, Ai L, Lu L, Hu Z (2013) Study on signal-in-space errors calculation method and statistical characterization of BeiDou navigation satellite system. Proc China Satell Navig Conf 2013:423–434Google Scholar
  3. CSNO (2013) BeiDou navigation satellite system signal in space interface control document-open service signal. Version 2.0, 26 December 2013, China Satellite Navigation Office (CSNO)Google Scholar
  4. Cui X (2006) Comparisons of two kinds of GPS broadcast ephemeris parameter algorithms. Chin J Sp Sci 26(5):382–387Google Scholar
  5. Dierendonck AJV, Russell SS, Kopitzke ER, Birnbaum M (1978) The GPS navigation message. Navigation 25(2):147–165CrossRefGoogle Scholar
  6. Diesposti R, Dilellio J, Kelley C, Dorsey A, Fliegel H, Berg J, Edgar C, Mckendree T, Shome P (2004) The proposed state vector representation of broadcast navigation message for user equipment implementation of GPS satellite ephemeris propagation. In: Proceedings of the ION NTM 2004, pp 294–312. Institute of Navigation, San Diego, California, USA, 26–28 JanGoogle Scholar
  7. Du L, Zhang Z, Zhang J, Liu L, Guo R, He F (2014) An 18-element GEO broadcast ephemeris based on non-singular elements. GPS Solut 19(1):49–59CrossRefGoogle Scholar
  8. EU (2015) European GNSS (Galileo) open service signal in space interface control document. Issue 1.2, November 2015. European UnionGoogle Scholar
  9. Fang S, Du L, Zhou P, Lu Y, Zhang Z, Liu Z (2016) Orbital list ephemerides design of LEO navigation augmentation satellite. Acta Geod Cartogr Sin 45(8):904–910Google Scholar
  10. Fu X, Wu M (2011) Optimal design of broadcast ephemeris parameters for a navigation satellite system. GPS Solut 16(4):439–448CrossRefGoogle Scholar
  11. Gilthorpe MS, Moore P (1992) A combined theory for zonal harmonic and resonance perturbations of a near-circular orbit with applications to COSMOS 1603 (1984-106A). Celest Mech Dyn Astron 54(4):363–391CrossRefGoogle Scholar
  12. GPS Directorate (2013) Navstar GPS space segment/navigation user interfaces. Interface specification, IS-GPS-200H, Version H, September 23, 2013, Global Positioning Systems DirectorateGoogle Scholar
  13. Guo J, Zhao Q, Guo X, Liu X, Liu J, Zhou Q (2015) Quality assessment of onboard GPS receiver and its combination with DORIS and SLR for Haiyang 2A precise orbit determination. Sci China Earth Sci 58(1):138–150CrossRefGoogle Scholar
  14. He F, Hu X, Liu L, Huang H, Zhou S, Wu S, Gu L, Zhao H, Liu X (2014) Fitting method and accuracy analysis of broadcast ephemeris in hybrid constellation. Proc China Satell Navig Conf 2014:265–275Google Scholar
  15. Heng L, Gao G, Walter T, Enge P (2011) Statistical characterization of GLONASS broadcast ephemeris errors. In: Proceedings of the ION GNSS 2011, pp 3109–3117. Institute of Navigation, Portland, Oregon, USA, 19–23 SeptGoogle Scholar
  16. Hintz GR (2008) Survey of orbit element sets. J Guid Control Dyn 31(3):785–790CrossRefGoogle Scholar
  17. Horemuž M, Andersson JV (2006) Polynomial interpolation of GPS satellite coordinates. GPS Solut 10(1):67–72CrossRefGoogle Scholar
  18. Hu Z, Chen G, Zhang Q, Guo J, Su X, Li X, Zhao Q, Liu J (2013) An initial evaluation about BDS navigation message accuracy. Proc China Satell Navig Conf 2013:479–491Google Scholar
  19. Hugentobler U, Montenbruck O (2017) Satellite orbits and attitude, Chap. 3. In: Teunissen PJG, Montenbruck O (eds) Springer handbook of global navigation satellite systems. Springer, BerlinGoogle Scholar
  20. ICD-GLONASS (2016) Global navigation satellite system GLONASS, interface control document, general description of code division multiple access signal system. Edition 1.0, Russian Institute of Space Device EngineeringGoogle Scholar
  21. JAXA (2014) Quasi-Zenith satellite system navigation service interface specification for QZSS. IS-QZSS V1.6, November 28, 2014, Japan Aerospace Exploration AgencyGoogle Scholar
  22. Joerger M, Neale J, Pervan B (2009) Iridium/GPS carrier phase positioning and fault detection over wide areas. In: Proceedings of the ION GNSS 2009, pp 1371–1385. Institute of Navigation, Savannah, Georgia, USA, 22–25 SeptGoogle Scholar
  23. Joerger M, Gratton L, Pervan B, Cohen CE (2010) Analysis of iridium-augmented GPS for floating carrier phase positioning. Navigation 57(2):137–160CrossRefGoogle Scholar
  24. Liu J, Ge M (2003) PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ J Nat Sci 8(2B):603–609Google Scholar
  25. Montenbruck O, Gill E (2000) Satellite orbits: models, methods, and applications. Springer, BerlinCrossRefGoogle Scholar
  26. Montenbruck O, Steigenberger P, Hauschild A (2014) Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solut 19(2):321–333CrossRefGoogle Scholar
  27. Piscane VL, Holland BB, Black HD (1973) Recent (1973) improvements in the navy navigation satellite system. Navigation 20(3):224–229CrossRefGoogle Scholar
  28. Rabinowitz M, Spilker JJ (2005) A new positioning system using television synchronization signals. IEEE Trans Broadcast 51(1):51–61CrossRefGoogle Scholar
  29. Reid TGR, Walter T, Enge PK, Sakai T (2015) Orbital representations for the next generation of satellite-based augmentation systems. GPS Solut 20(4):737–750CrossRefGoogle Scholar
  30. Reid TGR, Neish A, Walter T, Enge PK (2016) Leveraging commercial broadband LEO constellations for navigation. In: Proceedings of the ION GNSS + 2016, pp 2300–2314. Institute of Navigation, Portland, Oregon, USA, 12–16 SeptGoogle Scholar
  31. Thomas A, Stansell JR (1968) The navy navigation satellite system: description and status. Navigation 15(3):229–243CrossRefGoogle Scholar
  32. Tian S, Dai W, Liu R, Chang J, Li G (2014) System using hybrid LEO-GPS satellites for rapid resolution of integer cycle ambiguities. IEEE Trans Aerosp Electron Syst 50(3):1774–1785CrossRefGoogle Scholar
  33. Warren DL, Raquet JF (2003) Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solut 7(3):151–156CrossRefGoogle Scholar
  34. Xu G, Xu Y (2007) GPS: theory, algorithms and applications. Springer, BerlinGoogle Scholar
  35. Xu G, Xu J (2013) On the singularity problem in orbital mechanics. Mon Not R Astron Soc 429(2):1139–1148CrossRefGoogle Scholar
  36. Yin H, Morton Y, Carroll M, Vinande E (2015) Performance analysis of L2 and L5 CNAV broadcast ephemeris for orbit calculation. Navigation 62(2):121–130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GNSS Research CenterWuhan UniversityWuhanChina
  2. 2.Collaborative Innovation Center of Geospatial TechnologyWuhanChina
  3. 3.Fugro Intersite B.V.LeidschendamThe Netherlands

Personalised recommendations