GPS Solutions

, Volume 15, Issue 2, pp 171–180 | Cite as

Impact of the Halloween 2003 ionospheric storm on kinematic GPS positioning in Europe

  • N. Bergeot
  • C. Bruyninx
  • P. Defraigne
  • S. Pireaux
  • J. Legrand
  • E. Pottiaux
  • Q. Baire
Original Article

Abstract

Using dual-frequency data from 36 GPS stations from the EUREF Permanent Network (EPN), the influence of the October 30, 2003 Halloween geomagnetic storm on kinematic GPS positioning is investigated. The Halloween storm induced ionospheric disturbances above the northern part of Europe and Scandinavia. It is shown that kinematic position repeatabilities for this period are mainly affected for stations in northern Europe with outliers reaching 12 cm in the horizontal, and 26 cm in the vertical. These magnitudes are shown to be possibly due to the second-order ionospheric delays on GPS signals, not accounted for in the kinematic GPS positioning analysis performed. In parallel, we generate hourly TEC (Total Electron Content) maps on a 1° × 1° grid using the dense EPN network. These TEC maps do not use any interpolation but provide a high resolution in the time and space and therefore allow to better evidence small structures in the ionosphere than the classical 2-hourly 2.5° × 5° grid Global Ionospheric TEC Maps (GIM). Using the hourly 1° × 1° TEC maps, we reconstruct and refine exactly the zones of intense ionosphere activity during the storm, and we show the correlation between the ionospheric activity and assess the quality of GPS-based kinematic positioning performed in the European region.

Keywords

TEC maps GPS kinematic positioning Geomagnetic storm 

References

  1. Bruyninx C (2004) The EUREF permanent network: a multi-disciplinary network serving surveyors as well as scientists. GeoInformatics 7:32–35Google Scholar
  2. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0, 612p. Astronomical Institute, University of Bern, BernGoogle Scholar
  3. Elósegui P, Davis JL, Oberlander D, Baena R, Ekström G (2006) Accuracy of high-rate GPS for seismology. Geophys Res Lett 33:L11308. doi:10.1029/2006GL026065 CrossRefGoogle Scholar
  4. Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res 112:B08417. doi:10.1029/2006JB004707 CrossRefGoogle Scholar
  5. Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 ‘‘Halloween Storms’’. Geophys Res Lett 32:L12S02. doi:10.1029/2004GL021467 CrossRefGoogle Scholar
  6. Mervart L (1995) Ambiguity resolution techniques in geodetic and geodynamic applications of the global positioning system, Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 53, Schweizerische Geod¨atische Kommission, Institut f¨ur Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, ZürichGoogle Scholar
  7. Mitchell CN, Alfonsi L, De Franceschi G, Lester M, Romano V, Wernik AW (2005) GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett 32:L12S03. doi:10.1029/2004GL021644 CrossRefGoogle Scholar
  8. Niell AE (1996) Global mapping functions for the atmospheric delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  9. Niemegk geomagnetic field Observations (2010) One-minute averages of Niemegk observatory: view or download plots and ASCII listings of the Niemegk observatory data. http://www.gfz-potsdam.de/portal/-?$part=sec23&locale=en
  10. Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2009a) Influence of ionospheric perturbations in GPS time and frequency transfer. Adv Space Res 45(9):1101–1112. Special issue: recent advances in space weather monitoring, modelling, and forecasting, 3 May 2010, ISSN 0273-1177, doi:10.1016/j.asr.2009.07.011 Google Scholar
  11. Pireaux S, Defraigne P, Wauters L, Bergeot N, Baire Q, Bruyninx C (2009b) Higher-order ionospheric effects in GPS time and frequency transfer. GPS Solut doi:10.1007/S10291-009-0152-1
  12. Pulkkinen A, Lindahl S, Viljanen A, Pirjola R (2005) Geomagnetic storm of 29–31 October 2003: geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system. Space Weather 3:S08C03-. doi:10.1029/2004SW000123 CrossRefGoogle Scholar
  13. Schaer S, Gurtner W, Feltens J (1998) IONEX: the IONosphere Map EXchange Format version 1. In: Proceedings of the 1998 IGS analysis centres workshop, ESOC, Darmstadt, Germany, 9–11 Feb, pp 233–247Google Scholar
  14. Valladares CE, Villalobos J, Hei MA, Sheehan R, Basu Su, MacKenzie E, Doherty PH, Rios VH (2009) Simultaneous observation of travelling ionospheric disturbances in the northern and southern hemispheres. Ann Geophys 27:1501–1508. doi:10.5194/angeo-27-1501-2009 CrossRefGoogle Scholar
  15. Wild U (1994) Ionosphere and geodetic satellite systems: permanent GPS tracking data for modelling and monitoring. Geodatisch-geophysikalische Arbeiten in der Schweiz, vol 48. Schweizerische Geodatische Kommission, Ph.D. thesisGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • N. Bergeot
    • 1
  • C. Bruyninx
    • 1
  • P. Defraigne
    • 1
  • S. Pireaux
    • 1
  • J. Legrand
    • 1
  • E. Pottiaux
    • 1
  • Q. Baire
    • 1
  1. 1.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations