Advertisement

4OR

pp 1–22 | Cite as

Structural properties of feasible bookings in the European entry–exit gas market system

  • Lars Schewe
  • Martin SchmidtEmail author
  • Johannes Thürauf
Research Paper

Abstract

In this work, we analyze the structural properties of the set of feasible bookings in the European entry–exit gas market system. We present formal definitions of feasible bookings and then analyze properties that are important if one wants to optimize over them. Thus, we study whether the sets of feasible nominations and bookings are bounded, convex, connected, conic, and star-shaped. The results depend on the specific model of gas flow in a network. Here, we discuss a simple linear flow model with arc capacities as well as nonlinear and mixed-integer nonlinear models of passive and active networks, respectively. It turns out that the set of feasible bookings has some unintuitive properties. For instance, we show that the set is nonconvex even though only a simple linear flow model is used.

Keywords

Gas networks Bookings Entry–exit system Convexity Flow models 

Mathematics Subject Classification

90-XX 90B10 90C90 90C35 

Notes

Acknowledgements

This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. The first and second author also thank the DFG for their support within Projects A05, B07, and B08 in CRC TRR 154. Finally, we want to thank Fränk Plein for carefully reading a former version of this manuscript and for his comments that helped to improve the quality of the paper.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Alonso A, Olmos L, Serrano M (2010) Application of an entry-exit tariff model to the gas transport system in Spain. Energy Policy 38(9):5133–5140.  https://doi.org/10.1016/j.enpol.2010.04.043 Google Scholar
  2. Aßmann D, Liers F, Stingl M, Vera J (2018) Deciding robust feasibility and infeasibility using a set containment approach: an application to stationary passive gas network operations. SIAM J Optim 28(3):2489–2517.  https://doi.org/10.1137/17M112470X Google Scholar
  3. Aßmann D, Liers F, Stingl M (2019) Decomposable robust two-stage optimization: an application to gas network operations under uncertainty. Networks 74(1):40–61.  https://doi.org/10.1002/net.21871 Google Scholar
  4. Banda MK, Herty M (2008) Multiscale modeling for gas flow in pipe networks. Math Methods Appl Sci 31:915–936.  https://doi.org/10.1002/mma.948 Google Scholar
  5. Banda MK, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media 1(1):41–56.  https://doi.org/10.3934/nhm.2006.1.41 Google Scholar
  6. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, PrincetonGoogle Scholar
  7. Bermúdez A, González-Díaz J, González-Diéguez FJ, González-Rueda ÁM (2013) Gas transport networks: entry-exit tariffs via least squares methodology. Energy Policy 63:252–260.  https://doi.org/10.1016/j.enpol.2013.08.095 Google Scholar
  8. Boucher J, Smeers Y (1985) Gas trade in the European community during the 1970s. Energy Econ 7(2):102–116.  https://doi.org/10.1016/0140-9883(85)90025-8 Google Scholar
  9. Boucher J, Smeers Y (1987) Economic forces in the European gas market—a 1985 prospective. Energy Econ 9(1):2–16.  https://doi.org/10.1016/0140-9883(87)90002-8 Google Scholar
  10. Carter RG (1996) Compressor station optimization: computational accuracy and speed. In: 28th annual meeting. Paper 9605Google Scholar
  11. Carter RG (1998) Pipeline optimization: dynamic programming after 30 years. In: 30th annual meeting. Paper 9803Google Scholar
  12. Chyong CK, Hobbs BF (2014) Strategic Eurasian natural gas market model for energy security and policy analysis: formulation and application to South Stream. Energy Econ 44:198–211.  https://doi.org/10.1016/j.eneco.2014.04.006 Google Scholar
  13. Commission E (2001). First benchmarking report on the implementation of the internal electricity and gas market. Technical report, European Commission SEC (2001) 1957, https://ec.europa.eu/energy/sites/ener/files/documents/2001_report_bencmarking.pdf. Accessed 3 July 2019
  14. Cremer H, Laffont J-J (2002) Competition in gas markets. Eur Econ Rev 46(4–5):928–935.  https://doi.org/10.1016/S0014-2921(01)00226-4 Google Scholar
  15. Domschke P, Geißler B, Kolb O, Lang J, Martin A, Morsi A (2011) Combination of nonlinear and linear optimization of transient gas networks. INFORMS J Comput 23(4):605–617.  https://doi.org/10.1287/ijoc.1100.0429 Google Scholar
  16. Ehrgott M (2005) Multicriteria optimization, vol 491. Springer, Berlin.  https://doi.org/10.1007/3-540-27659-9 Google Scholar
  17. European Parliament and Council of the European Union (2009) Directive 2009/73/EC of the European Parliament and of the Council concerning common rules for the internal market in natural gas and repealing Directive 2003/55/ECGoogle Scholar
  18. European Parliament and Council of the European Union (2009) Regulation No 715/2009 of the European Parliament and of the Council on conditions for access to the natural gas transmission networks and repealing Regulation No 1775/2005. July 13Google Scholar
  19. Fügenschuh A, Geißler B, Gollmer R, Morsi A, Rövekamp J, Schmidt M, Spreckelsen K, Steinbach MC (2015) Chapter 2: physical and technical fundamentals of gas networks. In: Evaluating gas network capacities, pp 17–43.  https://doi.org/10.1137/1.9781611973693.ch2
  20. Fügenschuh A, Junosza-Szaniawski K, Kwasiborski S (2014) The reservation-allocation network flow problem. Technical report. https://www.researchgate.net/publication/265126185_The_Reservation-Allocation_Network_Flow_Problem. Accessed 3 July 2019
  21. Gabriel SA, Kiet S, Zhuang J (2005) A mixed complementarity-based equilibrium model of natural gas markets. Oper Res 53(5):799–818.  https://doi.org/10.1287/opre.1040.0199 Google Scholar
  22. Geißler B, Morsi A, Schewe L, Schmidt M (2015) Solving power-constrained gas transportation problems using an MIP-based alternating direction method. Comput Chem Eng 82:303–317.  https://doi.org/10.1016/j.compchemeng.2015.07.005 Google Scholar
  23. Geißler B, Morsi A, Schewe L, Schmidt M (2018) Solving highly detailed gas transport MINLPs: block separability and penalty alternating direction methods. INFORMS J Comput 30(2):309–323.  https://doi.org/10.1287/ijoc.2017.0780 Google Scholar
  24. Gotzes U, Heinecke N, Rövekamp J (2015) Chapter 3: regulatory rules for gas markets in Germany and other European countries. In: Evaluating gas network capacities, pp 45–64.  https://doi.org/10.1137/1.9781611973693.ch3
  25. Gotzes C, Heitsch H, Henrion R, Schultz R (2016) On the quantification of nomination feasibility in stationary gas networks with random load. Math Methods Oper Res 84(2):427–457.  https://doi.org/10.1007/s00186-016-0564-y Google Scholar
  26. Grimm V, Grübel J, Schewe L, Schmidt M, Zöttl G (2019) Nonconvex equilibrium models for gas market analysis: failure of standard techniques and alternative modeling approaches. Eur J Oper Res 273(3):1097–1108.  https://doi.org/10.1016/j.ejor.2018.09.016 Google Scholar
  27. Grimm V, Schewe L, Schmidt M, Zöttl G (2019) A multilevel model of the European entry-exit gas market. Math Methods Oper Res 89(2):223–255.  https://doi.org/10.1007/s00186-018-0647-z Google Scholar
  28. Groß M, Pfetsch ME, Schewe L, Schmidt M, Skutella M (2019) Algorithmic results for potential-based flows: easy and hard cases. Networks 73(3):306–324.  https://doi.org/10.1002/net.21865 Google Scholar
  29. Gugat M, Leugering G, Martin A, Schmidt M, Sirvent M, Wintergerst D (2018) MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems. Comput Optim Appl 70(1):267–294.  https://doi.org/10.1007/s10589-017-9970-1 Google Scholar
  30. Gugat M, Leugering G, Martin A, Schmidt M, Sirvent M, Wintergerst D (2018) Towards simulation based mixed-integer optimization with differential equations. Networks 72(1):60–83.  https://doi.org/10.1002/net.21812 Google Scholar
  31. Hante FM, Schmidt M (2019) Complementarity-based nonlinear programming techniques for optimal mixing in gas networks. EURO J Comput Optim 1:2–3.  https://doi.org/10.1007/s13675-019-00112-w (pre-published)Google Scholar
  32. Hayn C (2016) Computing maximal entry and exit capacities of transportation networks. Ph.D. thesis. Friedrich-Alexander Universität Erlangen-NürnbergGoogle Scholar
  33. Hiriart-Urruty J-B, Lemaréchal C (2001) Fundamentals of convex analysis. Springer, Berlin.  https://doi.org/10.1007/978-3-642-56468-0 Google Scholar
  34. Humpola J, Fügenschuh A, Lehmann T, Lenz R, Schwarz R, Schweiger J (2015) The specialized MINLP approach. In: Evaluating gas network capacities, Chap 7, pp 123–143.  https://doi.org/10.1137/1.9781611973693.ch7
  35. Koch T, Hiller B, Pfetsch ME, Schewe L (2015) Evaluating gas network capacities. SIAM-MOS Ser Optim SIAM.  https://doi.org/10.1137/1.9781611973693 Google Scholar
  36. Labbé M, Plein F, Schmidt M (2019) Bookings in the European gas market: characterisation of feasibility and computational complexity results. Optim Eng.  https://doi.org/10.1007/s11081-019-09447-0 Google Scholar
  37. Leugering G, Martin A, Schmidt M, Sirvent M (2017) Nonoverlapping domain decomposition for optimal control problems governed by semilinear models for gas flow in networks. Control Cybern 46(3):191–225Google Scholar
  38. Mahlke D, Martin A, Moritz S (2010) A mixed integer approach for time-dependent gas network optimization. Optim Methods Softw 25(4):625–644.  https://doi.org/10.1080/10556780903270886 Google Scholar
  39. Martin A, Möller M, Moritz S (2006) Mixed integer models for the stationary case of gas network optimization. Math Program Ser B 105(2):563–582.  https://doi.org/10.1007/s10107-005-0665-5 Google Scholar
  40. Martin A, Geißler B, Hayn C, Morsi A, Schewe L, Hiller B, Humpola J, Koch T, Lehmann T, Schwarz R, Schweiger J, Pfetsch M, Schmidt M, Steinbach M, Willert B, Schultz R (2011) Optimierung Technischer Kapazitäten in Gasnetzen. In: Optimierung in der Energiewirtschaft. VDI-Berichte 2157, pp 105–114. https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/1512. Accessed 3 July 2019
  41. Mehrmann V, Schmidt M, Stolwijk JJ (2018) Model and discretization error adaptivity within stationary gas transport optimization. Vietnam J Math 1:2–3.  https://doi.org/10.1007/s10013-018-0303-1 Google Scholar
  42. Meran G, von Hirschhausen C, Neumann A (2010) Access pricing and network expansion in natural gas markets. Z für Energiewirtschaft 34(3):179–183.  https://doi.org/10.1007/s12398-010-0028-7 Google Scholar
  43. Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T, Martin A, Morsi A, Rövekamp J, Schewe L, Schmidt M, Schultz R, Schwarz R, Schweiger J, Stangl C, Steinbach MC, Vigerske S, Willert BM (2015) Validation of nominations in gas network optimization: models, methods, and solutions. Optim Methods Softw 30(1):15–53.  https://doi.org/10.1080/10556788.2014.888426 Google Scholar
  44. Ríos-Mercado RZ, Borraz-Sánchez C (2015) Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl Energy 147:536–555.  https://doi.org/10.1016/j.apenergy.2015.03.017 Google Scholar
  45. Robinius M, Schewe L, Schmidt M, Stolten D, Thürauf J, Welder L (2019) Robust optimal discrete arc sizing for tree-shaped potential networks. Comput Optim Appl 73(3):791–819.  https://doi.org/10.1007/s10589-019-00085-x Google Scholar
  46. Schewe L, Koch T, Martin A, Pfetsch ME (2015) Chapter 5: mathematical optimization for evaluating gas network capacities. In: Evaluating gas network capacities, pp 87–102.  https://doi.org/10.1137/1.9781611973693.ch5
  47. Schmidt M (2013) A generic interior-point framework for nonsmooth and complementarity constrained nonlinear optimization. Ph.D. thesis. Gottfried Wilhelm Leibniz Universität HannoverGoogle Scholar
  48. Schmidt M, Steinbach MC, Willert BM (2015) High detail stationary optimization models for gas networks. Optim Eng 16(1):131–164.  https://doi.org/10.1007/s11081-014-9246-x Google Scholar
  49. Schmidt M, Steinbach MC, Willert BM (2015). The precise NLP model. In: Koch T, Hiller B, Pfetsch ME, Schewe L (eds) Evaluating gas network capacities. SIAM-MOS Series on Optimization SIAM, Chap 10, pp 181–210.  https://doi.org/10.1137/1.9781611973693.ch10
  50. Schmidt M, Steinbach MC, Willert BM (2016) High detail stationary optimization models for gas networks: validation and results. Optim Eng 17(2):437–472.  https://doi.org/10.1007/s11081-015-9300-3 Google Scholar
  51. Schrijver A (2003) Combinatorial optimization–polyhedra and efficiency. Springer, BerlinGoogle Scholar
  52. Siddiqui S, Gabriel SA (2017) Modeling market power in the U.S. shale gas market. Optim Eng 18(1):203–213.  https://doi.org/10.1007/s11081-016-9310-9 Google Scholar
  53. Willert B (2014) Validation of nominations in gas networks and properties of technical capacities. Ph.D. thesis. Gottfried Wilhelm Leibniz Universität HannoverGoogle Scholar
  54. Wong PJ, Larson RE (1968) Optimization of tree-structured natural-gas transmission networks. J Math Anal Appl 24:613–626.  https://doi.org/10.1016/0022-247X(68)90014-0 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-Nürnberg, Discrete OptimizationErlangenGermany
  2. 2.Energie Campus NürnbergNürnbergGermany
  3. 3.Department of MathematicsTrier UniversityTrierGermany
  4. 4.School of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations