Advertisement

Optimized operating rules for short-term hydropower planning in a stochastic environment

  • Alexia MarchandEmail author
  • Michel Gendreau
  • Marko Blais
  • Jonathan Guidi
Original Paper
  • 10 Downloads

Abstract

To operate a large-scale hydropower production system in an ever-changing environment, operating rules are a convenient way of communication between short-term planners and real-time dispatchers. This articles presents a new form of operating rules, and a solution approach to solve the short-term planning problem directly in the space of rules. Our operating rules are designed to handle complex hydro-valleys and highly constrained reservoirs. Our solution approach is based on tabu search and easily implemented. Uncertainty on inflows and electrical load is represented in the mathematical model via a 2-stage scenario tree. Numerical experiments on real instances from Hydro-Québec show that our approach is able to find good stochastic solutions while respecting the operational timing, and it improves the objective value by up to 54% in instances with moderate to high inflows.

Keywords

Hydropower planning Operating rules Stochastic optimization Tabu search 

Notes

Acknowledgements

This work was supported by NSERC/Hydro-Québec Industrial Research Chair on the Stochastic Optimization of Electricity Generation, Hydro-Québec Production, and Mitacs through the Mitacs Accelerate program.

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1989) Chapter IV network flows. In: Handbooks in operations research and management science, vol 1. Elsevier, Amsterdam, pp 211–369. http://linkinghub.elsevier.com/retrieve/pii/S0927050789010054
  2. Amiri M, Khanmohammadi S (2013) A primary unit commitment approach with a modification process. Appl Soft Comput 13(2):1007–1015.  https://doi.org/10.1016/j.asoc.2012.10.008 CrossRefGoogle Scholar
  3. Baldwin CJ, Dale KM, Dittrich RF (1959) A study of the economic shutdown of generating units in daily dispatch. Trans Am Inst Electr Eng III Power Appar Syst 78(4):1272–1282.  https://doi.org/10.1109/AIEEPAS.1959.4500539 Google Scholar
  4. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Computat Intell Mag 1(4):28–39.  https://doi.org/10.1109/MCI.2006.329691 CrossRefGoogle Scholar
  5. Gendreau M, Potvin JY (eds) (2010) Handbook of metaheuristics. International Series in Operations Research and Management Science, vol 146. Springer, Boston.  https://doi.org/10.1007/978-1-4419-1665-5
  6. Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206.  https://doi.org/10.1287/ijoc.1.3.190 CrossRefGoogle Scholar
  7. Guan X, Luh PB, Yan H, Amalfi JA (1992) An optimization-based method for unit commitment. Int J Electr Power Energy Syst 14(1):9–17.  https://doi.org/10.1016/0142-0615(92)90003-R CrossRefGoogle Scholar
  8. Holland J (1973) Genetic algorithms and the optimal allocation of trials. SIAM J Comput 2(2):88–105.  https://doi.org/10.1137/0202009 CrossRefGoogle Scholar
  9. Hydro-Québec (2017) Annual report 2017. Hydro-QuébecGoogle Scholar
  10. Karimanzira D (2016) Model based decision support systems. In: Rauschenbach T (ed) Modeling, control and optimization of water systems. Springer, Berlin, pp 185–220.  https://doi.org/10.1007/978-3-642-16026-4_5 CrossRefGoogle Scholar
  11. Keutchayan J, Gendreau M, Saucier A (2017) Quality evaluation of scenario-tree generation methods for solving stochastic programming problems. Comput Manag Sci 14(3):333–365.  https://doi.org/10.1007/s10287-017-0279-4 CrossRefGoogle Scholar
  12. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680.  https://doi.org/10.1126/science.220.4598.671 CrossRefGoogle Scholar
  13. Liu G, Tomsovic K (2015) Robust unit commitment considering uncertain demand response. Electr Power Syst Res 119:126–137.  https://doi.org/10.1016/j.epsr.2014.09.006 CrossRefGoogle Scholar
  14. Marchand A, Gendreau M, Blais M, Emiel G (2018) An efficient Tabu search procedure for short-term planning of large-scale hydropower systems, working paperGoogle Scholar
  15. Moradi S, Khanmohammadi S, Hagh MT, Mohammadi-ivatloo B (2015) A semi-analytical non-iterative primary approach based on priority list to solve unit commitment problem. Energy 88:244–259.  https://doi.org/10.1016/j.energy.2015.04.102 CrossRefGoogle Scholar
  16. Quan R, Jian J, Yang L (2015) An improved priority list and neighborhood search method for unit commitment. Int J Electr Power Energy Syst 67:278–285.  https://doi.org/10.1016/j.ijepes.2014.11.025 CrossRefGoogle Scholar
  17. Séguin S, Fleten SE, Côté P, Pichler A, Audet C (2017) Stochastic short-term hydropower planning with inflow scenario trees. Eur J Oper Res 259(3):1156–1168.  https://doi.org/10.1016/j.ejor.2016.11.028 CrossRefGoogle Scholar
  18. Senjyu T, Shimabukuro K, Uezato K, Funabashi T (2003) A fast technique for unit commitment problem by extended priority list. IEEE Trans Power Syst 18(2):882–888.  https://doi.org/10.1109/TPWRS.2003.811000 CrossRefGoogle Scholar
  19. van Ackooij W, Henrion R, Möller A, Zorgati R (2014) Joint chance constrained programming for hydro reservoir management. Optim Eng 15(2):509–531.  https://doi.org/10.1007/s11081-013-9236-4 Google Scholar
  20. van Ackooij W, Lopez ID, Frangioni A, Lacalandra F, Tahanan M (2018) Large-scale unit commitment under uncertainty: an updated literature survey. Technical report, Università di Pisa. http://eprints.adm.unipi.it/2374/1/UUC-Survey.pdf

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Industrial EngineeringPolytechnique MontréalMontrealCanada
  2. 2.Hydro-QuébecMontrealCanada

Personalised recommendations