Computational Management Science

, Volume 16, Issue 1–2, pp 187–215 | Cite as

Tempered stable process, first passage time, and path-dependent option pricing

  • Young Shin KimEmail author
Original Paper


In this paper, we will discuss an approximation of the characteristic function of the first passage time for a Lévy process using the martingale approach. The characteristic function of the first passage time of the tempered stable process is provided explicitly or by an indirect numerical method. This will be applied to the perpetual American option pricing and the barrier option pricing. For the numerical illustration, we calibrate risk neutral process parameters using S&P 500 index option prices and apply those parameters to find prices of perpetual American option and barrier option.


Lévy process Tempered stable process First passage time Barrier option pricing Perpetual American option pricing 

JEL Classification

G13 C21 C42 



I am grateful to Professor Kyuong Jin Choi, in Haskayne School of Business, University of Calgary, who gave the motivation to complete of this research. Also, all remaining errors are entirely my own.


  1. Applebaum D (2004) Lévy process and stochastic calculus. Cambridge University Press, New YorkCrossRefGoogle Scholar
  2. Barndorff-Nielsen O (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc R Soc Lond A 353(1674):401–419. ISSN 0080-4630.
  3. Barndorff-Nielsen OE, Levendorskii S (2001) Feller processes of normal inverse gaussian type. Quant Finance 1:318–331CrossRefGoogle Scholar
  4. Barndorff-Nielsen OE, Shephard N (2001) Normal modified stable processes. Economics Series Working Papers from University of Oxford, Department of Economics, 72Google Scholar
  5. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654CrossRefGoogle Scholar
  6. Boguslavskaya E (2014) Solving optimal stopping problems for Lévy processes in infinite horizon via \(A\)-transform. ArXiv e-prints, MarchGoogle Scholar
  7. Boyarchenko SI, Levendorskiĭ SZ (2000) Option pricing for truncated Lévy processes. Int J Theor Appl Finance 3:549–552CrossRefGoogle Scholar
  8. Boyarchenko SI, Levendorskiĭ SZ (2002a) Non-Gaussian Merton–Black–Scholes theory. World Scientific, SingaporeCrossRefGoogle Scholar
  9. Boyarchenko SI, Levendorskiĭ SZ (2002b) Perpetual american options under Lévy processes. SIAM J Control Optim 40(6):1663–1696CrossRefGoogle Scholar
  10. Boyarchenko SI, Levendorskiĭ SZ (2002c) Barrier options and touch-and-out options under regular lvy processes of exponential type. Ann Appl Probab 12(4):1261–1298CrossRefGoogle Scholar
  11. Carr P, Madan D (1999) Option valuation using the fast fourier transform. J Comput Finance 2(4):61–73CrossRefGoogle Scholar
  12. Carr P, Geman H, Madan D, Yor M (2002) The fine structure of asset returns: an empirical investigation. J Bus 75(2):305–332CrossRefGoogle Scholar
  13. Chandra SR, Mukherjee D (2016) Barrier option under Levy model: a pide and Mellin transform approach. Mathematics 4(1):2. CrossRefGoogle Scholar
  14. Cont R, Tankov P (2004) Financial modelling with jump processes. Chapman & Hall, LondonGoogle Scholar
  15. Ferreiro-Castilla A, Schoutens W (2012) The \(\beta \)-meixner model. J Comput Appl Math 236(9):2466–2476. (ISSN 0377-0427)
  16. Gerber HU, Shiu ESW (1994) Martingale approach to pricing perpetual american options. Astin Bull 24:195–220CrossRefGoogle Scholar
  17. Hull JC (2015) Options, futures and other derivatives, 9th edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  18. Hurd TR, Kuznetsov A (2009) On the first passage time for brownian motion subordinated by a Lévy process. J Appl Probab 46(1):181–198. CrossRefGoogle Scholar
  19. Kim SI, Kim YS (2018) Normal tempered stable structural model. Rev Deriv Res 21(1):119–148CrossRefGoogle Scholar
  20. Kim YS (2005) The modified tempered stable processes with application to finance. Doctoral Dissertation, Sogang UniversityGoogle Scholar
  21. Kim YS, Lee JH (2006) The relative entropy in CGMY processes and its applications to finance. Math Methods Oper Res 66(2):327–338CrossRefGoogle Scholar
  22. Kim YS, Lee J, Mittnik S, Park J (2015) Quanto option pricing in the presence of fat tails and asymmetric dependence. J Econom 187(2):512–520. ISSN 0304-4076. (Econometric Analysis of Financial Derivatives)
  23. Koponen I (1995) Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys Rev E 52:1197–1199CrossRefGoogle Scholar
  24. Lewis AL (2001) A simple option formula for general jump-diffusion and other exponential Lévy processes.
  25. Rachev ST, Kim YS, Bianch ML, Fabozzi FJ (2011) Financial models with Lévy processes and volatility clustering. Wiley, LondonCrossRefGoogle Scholar
  26. Rogers LCG (2000) Evaluating first-passage probabilities for spectrally one-sided Levy processes. J Appl Probab 37(4):1173–1180. CrossRefGoogle Scholar
  27. Schoutens W (2003) Lévy processes in finance. Wiley, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of BusinessStony Brook UniversityNew YorkUSA

Personalised recommendations