Clinical Autonomic Research

, Volume 29, Issue 4, pp 427–441 | Cite as

A practical guide to active stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring

  • Ciarán FinucaneEmail author
  • V. K. van Wijnen
  • C. W. Fan
  • C. Soraghan
  • L. Byrne
  • B. E. Westerhof
  • R. Freeman
  • A. Fedorowski
  • M. P. M. Harms
  • W. Wieling
  • R. Kenny
Review Article



The average adult stands approximately 50–60 times per day. Cardiovascular responses evoked during the first 3 min of active standing provide a simple means to clinically assess short-term neural and cardiovascular function across the lifespan. Clinically, this response is used to identify the haemodynamic correlates of patient symptoms and attributable causes of (pre-)syncope, and to detect autonomic dysfunction, variants of orthostatic hypotension, postural orthostatic tachycardia syndrome and orthostatic hypertension.


This paper provides a set of experience/expertise-based recommendations detailing current state-of-the-art measurement and analysis approaches for the active stand test, focusing on beat-to-beat BP technologies. This information is targeted at those interested in performing and interpreting the active stand test to current international standards.


This paper presents a practical step-by-step guide on (1) how to perform active stand measurements using beat-to-beat continuous blood pressure measurement technologies, (2) how to conduct an analysis of the active stand response and (3) how to identify the spectrum of abnormal blood pressure and heart rate responses which are of clinical interest.


Impairments in neurocardiovascular control are an attributable cause of falls and syncope across the lifespan. The simple active stand test provides the clinician with a powerful tool for assessing individuals at risk of such common disorders. However, its simplicity belies the complexity of its interpretation. Care must therefore be taken in administering and interpreting the test in order to maximise its clinical benefit and minimise its misinterpretation.


Active stand Continuous blood pressure Orthostatic hypotension Falls and syncope Autonomic dysfunction 



BEW was supported by NWO-VICI (918.16.610).

Compliance with ethical standards

Conflict of interest

BEW previously worked for Edwards Lifesciences, Amsterdam, The Netherlands.

Supplementary material

10286_2019_606_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 67 kb)


  1. 1.
    Smith L, Hamer M, Ucci M, Marmot A, Gardner B, Sawyer A et al (2015) Weekday and weekend patterns of objectively measured sitting, standing, and stepping in a sample of office-based workers: the active buildings study. BMC Public Health 17(15):9CrossRefGoogle Scholar
  2. 2.
    Dall PM, Kerr A (2010) Frequency of the sit to stand task: an observational study of free-living adults. Appl Ergon 41(1):58–61CrossRefGoogle Scholar
  3. 3.
    van Wijnen VK, Finucane C, Harms MPM, Nolan H, Freeman RL, Westerhof BE et al (2017) Noninvasive beat-to-beat finger arterial pressure monitoring during orthostasis: a comprehensive review of normal and abnormal responses at different ages. J Intern Med 282(6):468–483CrossRefGoogle Scholar
  4. 4.
    Brignole M, Moya A, Lange D, Deharo J-C, Elliott PM et al (2018) 2018 ESC guidelines for the diagnosis and management of syncope. Eur Heart J 39(21):1883–1948CrossRefGoogle Scholar
  5. 5.
    Freeman R, Wieling W, Axelrod FB, Benditt DG, Benarroch E, Biaggioni I et al (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21(2):69–72CrossRefGoogle Scholar
  6. 6.
    Wieling W, Karemaker JM (2013) Measurement of heart rate and blood pressure to evaluate disturbances in neurocardiovascular control. In: Mathias CJ, Bannister SR (eds) Autonomic failure, 5th edn. Oxford University Press, OxfordGoogle Scholar
  7. 7.
    Finucane C, O’Connell MD, Fan CW, Savva GM, Soraghan CJ, Nolan H et al (2014) Age related normative changes in phasic orthostatic blood pressure in a large population study: findings from The Irish Longitudinal Study on Ageing (TILDA). Circulation 130(20):1780–1789CrossRefGoogle Scholar
  8. 8.
    Fessel J, Robertson D (2006) Orthostatic hypertension: when pressor reflexes overcompensate. Nat Rev Nephrol 2(8):424–431CrossRefGoogle Scholar
  9. 9.
    Kario K, Eguchi K, Hoshide S, Hoshide Y, Umeda Y, Mitsuhashi T et al (2002) U-curve relationship between orthostatic blood pressure change and silent cerebrovascular disease in elderly hypertensives: orthostatic hypertension as a new cardiovascular risk factor. J Am Coll Cardiol 40(1):133–141CrossRefGoogle Scholar
  10. 10.
    Fedorowski A, Ostling G, Persson M, Struck J, Engström G, Nilsson PM et al (2012) Orthostatic blood pressure response, carotid intima-media thickness, and plasma fibrinogen in older nondiabetic adults. J Hypertens 30(3):522–529CrossRefGoogle Scholar
  11. 11.
    Smit AAJ, Halliwill JR, Low PA, Wieling W (2017) Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol 519(1):1–10CrossRefGoogle Scholar
  12. 12.
    Low PA, Sandroni P, Joyner M, Shen W-K (2009) Postural Tachycardia Syndrome (POTS). J Cardiovasc Electrophysiol 20(3):352–358CrossRefGoogle Scholar
  13. 13.
    Finucane C, O’Connell MDL, Donoghue O, Richardson K, Savva GM, Kenny RA (2017) Impaired orthostatic blood pressure recovery is associated with unexplained and injurious falls. J Am Geriatr Soc 65(3):474–482CrossRefGoogle Scholar
  14. 14.
    Shaw BH, Claydon VE (2014) The relationship between orthostatic hypotension and falling in older adults. Clin Auton Res 24(1):3–13CrossRefGoogle Scholar
  15. 15.
    Juraschek SP, Daya N, Appel LJ, Miller ER, Windham BG, Pompeii L et al (2017) Orthostatic hypotension in middle-age and risk of falls. Am J Hypertens 30(2):188–195CrossRefGoogle Scholar
  16. 16.
    Juraschek SP, Daya N, Rawlings AM, Appel LJ, Miller ER, Windham BG et al (2017) Comparison of early versus late orthostatic hypotension assessment times in middle-age adults. JAMA Intern Med 177(9):1316–1323CrossRefGoogle Scholar
  17. 17.
    Briggs R, Kenny RA, Kennelly SP (2017) Does baseline hypotension predict incident depression in a cohort of community-dwelling older people? Data from the Irish Longitudinal Study on Ageing (TILDA). Age Ageing 46(4):648–653CrossRefGoogle Scholar
  18. 18.
    Briggs R, Carey D, Kennelly SP, Kenny RA (2018) Longitudinal association between orthostatic hypotension at 30 seconds post-standing and late-life depression. Hypertension 71:946–954CrossRefGoogle Scholar
  19. 19.
    Frewen J, Savva GM, Boyle G, Finucane C, Kenny RA (2014) Cognitive performance in orthostatic hypotension: findings from a nationally representative sample. J Am Geriatr Soc 62(1):117–122CrossRefGoogle Scholar
  20. 20.
    O’Hare C, Kenny R-A, Aizenstein H, Boudreau R, Newman A, Launer L et al (2017) Cognitive status, gray matter atrophy, and lower orthostatic blood pressure in older adults. J Alzheimers Dis 57(4):1239–1250CrossRefGoogle Scholar
  21. 21.
    Frewen J, Finucane C, Savva GM, Boyle G, Kenny RA (2014) Orthostatic hypotension is associated with lower cognitive performance in adults aged 50 plus with supine hypertension. J Gerontol Ser A 69(7):878–885CrossRefGoogle Scholar
  22. 22.
    Hayakawa T, McGarrigle CA, Coen RF, Soraghan CJ, Foran T, Lawlor BA et al (2015) Orthostatic blood pressure behavior in people with mild cognitive impairment predicts conversion to dementia. J Am Geriatr Soc 63(9):1868–1873CrossRefGoogle Scholar
  23. 23.
    Holm H, Nägga K, Nilsson ED, Melander O, Minthon L, Bachus E et al (2017) Longitudinal and postural changes of blood pressure predict dementia: the Malmö Preventive Project. Eur J Epidemiol 32(4):327–336CrossRefGoogle Scholar
  24. 24.
    Fedorowski A, Engström G, Hedblad B, Melander O (2010) Orthostatic hypotension predicts incidence of heart failure: the Malmö preventive project. Am J Hypertens 23(11):1209–1215CrossRefGoogle Scholar
  25. 25.
    Fedorowski A, Stavenow L, Hedblad B, Berglund G, Nilsson PM, Melander O (2010) Orthostatic hypotension predicts all-cause mortality and coronary events in middle-aged individuals (The Malmö Preventive Project). Eur Heart J 31(1):85–91CrossRefGoogle Scholar
  26. 26.
    McCrory C, Berkman L, Nolan H, O’Leary N, Foley M, Kenny RA (2016) Speed of heart rate recovery in response to orthostatic challenge: a strong risk marker of mortality. Circ Res 119(5):666–675CrossRefGoogle Scholar
  27. 27.
    Lagro J, Schoon Y, Heerts I, Meel-van den Abeelen ASS, Schalk B, Wieling W, et al. Impaired systolic blood pressure recovery directly after standing predicts mortality in older falls clinic patients. J Gerontol A Biol Sci Med Sci. 2014;69(4):471–8Google Scholar
  28. 28.
    Chung E, Chen G, Alexander B, Cannesson M (2013) Non-invasive continuous blood pressure monitoring: a review of current applications. Front Med 7(1):91–101CrossRefGoogle Scholar
  29. 29.
    Truijen J, van Lieshout JJ, Wesselink WA, Westerhof BE (2012) Noninvasive continuous hemodynamic monitoring. J Clin Monit Comput 26(4):267–278CrossRefGoogle Scholar
  30. 30.
    Romero-Ortuno R, Cogan L, Foran T, Kenny RA, Fan CW (2011) Continuous noninvasive orthostatic blood pressure measurements and their relationship with orthostatic intolerance, falls, and frailty in older people. J Am Geriatr Soc 59(4):655–665CrossRefGoogle Scholar
  31. 31.
    Finucane C (2008) Identifying blood pressure response subtypes following orthostasis using pattern recognition techniques. Accessed 3 Jul 2018
  32. 32.
    Wieling W, Krediet CTP, van Dijk N, Linzer M, Tschakovsky ME (2007) Initial orthostatic hypotension: review of a forgotten condition. Clin Sci Lond Engl 1979. 112(3):157–65Google Scholar
  33. 33.
    Finucane C, Savva GM, Kenny RA (2017) Reliability of orthostatic beat-to-beat blood pressure tests: implications for population and clinical studies. Clin Auton Res 27(1):31–39CrossRefGoogle Scholar
  34. 34.
    Lipsitz LA, Storch HA, Minaker KL, Rowe JW (1985) Intra-individual variability in postural blood pressure in the elderly. Clin Sci 69(3):337–341CrossRefGoogle Scholar
  35. 35.
    Imholz BP, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616CrossRefGoogle Scholar
  36. 36.
    Edwards Lifesciences BMEYE (2008) Nexfin HD Operator’s manual. Edwards Lifesciences BMEYE, AmsterdamGoogle Scholar
  37. 37.
    Bartels SA, Stok WJ, Bezemer R, Boksem RJ, van Goudoever J, Cherpanath TGV et al (2011) Noninvasive cardiac output monitoring during exercise testing: Nexfin pulse contour analysis compared to an inert gas rebreathing method and respired gas analysis. J Clin Monit Comput 25(5):315–321CrossRefGoogle Scholar
  38. 38.
    Wesseling KH, De Wit B, Van der Hoeven GMA, Van Goudoever J, Settels JJ (1995) Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis 36:67–82Google Scholar
  39. 39.
    Fortin J, Marte W, Grüllenberger R, Hacker A, Habenbacher W, Heller A et al (2006) Continuous non-invasive blood pressure monitoring using concentrically interlocking control loops. Comput Biol Med 36(9):941–957CrossRefGoogle Scholar
  40. 40.
    Martina JR, Westerhof BE, Van Goudoever J, De Jonge N, Van Lieshout JJ, Lahpor JR et al (2010) Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study. ASAIO J 56(3):221CrossRefGoogle Scholar
  41. 41.
    Rongen GA, Bos WJW, Lenders JWM, Montfrans V, A G, Lier V et al (1995) Comparison of intrabrachial and finger blood pressure in healthy elderly volunteers. Am J Hypertens 8(3):237–48Google Scholar
  42. 42.
    Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ (1993) Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol Bethesda Md 1985 74(5):2566–73Google Scholar
  43. 43.
    Bogert LWJ, Wesseling KH, Schraa O, Van Lieshout EJ, de Mol BA, van Goudoever J et al (2010) Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65(11):1119–25Google Scholar
  44. 44.
    Ameloot K, Palmers P-J, Malbrain MLNG (2015) The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care 21(3):232–239CrossRefGoogle Scholar
  45. 45.
    Truijen J, Westerhof BE, Kim Y-S, Stok WJ, de Mol BA, Preckel B et al (2018) The effect of hemodynamic and peripheral vascular variability on cardiac output monitoring: thermodilution and non-invasive pulse contour cardiac output during cardiothoracic surgery. Anaesthesia 73(12):1489–1499CrossRefGoogle Scholar
  46. 46.
    The Irish Longitudinal Study on Ageing (2013) TILDA Wave 3 health assessment standard operating procedure. UnpublishedGoogle Scholar
  47. 47.
    Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society (2011) Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc 59(1):148–57Google Scholar
  48. 48.
    Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R et al (2015) Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev 27(7):654–664CrossRefGoogle Scholar
  49. 49.
    Wieling W, Colman N, Krediet CTP, Freeman R (2004) Nonpharmacological treatment of reflex syncope. Clin Auton Res 14(Suppl 1):62–70CrossRefGoogle Scholar
  50. 50.
    Groothuis JT, van Dijk N, Ter Woerds W, Wieling W, Hopman MTE (2007) Leg crossing with muscle tensing, a physical counter-manoeuvre to prevent syncope, enhances leg blood flow. Clin Sci Lond Engl 1979 112(3):193–201Google Scholar
  51. 51.
    Sprangers RL, Veerman DP, Karemaker JM, Wieling W (1991) Initial circulatory responses to changes in posture: influence of the angle and speed of tilt. Clin Physiol Oxf Engl 11(3):211–220CrossRefGoogle Scholar
  52. 52.
    Jansen RWMM (1995) Postprandial hypotension: epidemiology, pathophysiology, and clinical management. Ann Intern Med 122(4):286CrossRefGoogle Scholar
  53. 53.
    Fan CW, Savva GM, Finucane C, Cronin H, O’Regan C, Kenny RA et al (2012) Factors affecting continuous beat-to-beat orthostatic blood pressure response in community-dwelling older adults. Blood Press Monit 17(4):160CrossRefGoogle Scholar
  54. 54.
    Hayano J, Sakakibara Y, Yamada M, Kamiya T, Fujinami T, Yokoyama K et al (1990) Diurnal variations in vagal and sympathetic cardiac control. Am J Physiol Heart Circ Physiol 258(3):H642–H646CrossRefGoogle Scholar
  55. 55.
    Pal MD, Benarroch EE (eds.) (2008) Clinical autonomic disorders, 3rd edition. LWW, PhiladelphiaGoogle Scholar
  56. 56.
    van de Borne P, Mark AL, Montano N, Mion D, Somers VK (1997) Effects of alcohol on sympathetic activity, hemodynamics, and chemoreflex sensitivity. Hypertension 29(6):1278–1283CrossRefGoogle Scholar
  57. 57.
    Goldsmith RL, Bloomfield DM, Rosenwinkel ET (2000) Exercise and autonomic function. Coron Artery Dis 11(2):129CrossRefGoogle Scholar
  58. 58.
    Halliwill JR, Taylor JA, Eckberg DL (1996) Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol 495(Pt 1):279–288CrossRefGoogle Scholar
  59. 59.
    Frith J, Rn PR, Newton JL (2015) Length of time required to achieve a stable baseline blood pressure in the diagnosis of orthostatic hypotension. J Am Geriatr Soc 61(8):1414–1415CrossRefGoogle Scholar
  60. 60.
    Mader SL, Palmer RM, Rubenstein LZ (1989) Effect of timing and number of baseline blood pressure determinations on postural blood pressure response. J Am Geriatr Soc 37(5):444–446CrossRefGoogle Scholar
  61. 61.
    Ewing DJ, Neilson JM, Shapiro CM, Stewart JA, Reid W (1991) Twenty four hour heart rate variability: effects of posture, sleep, and time of day in healthy controls and comparison with bedside tests of autonomic function in diabetic patients. Heart 65(5):239–244CrossRefGoogle Scholar
  62. 62.
    Westerhof BE, Gisolf J, Stok WJ, Wesseling KH, Karemaker JM (2004) Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. J Hypertens 22(7):1371CrossRefGoogle Scholar
  63. 63.
    FMS, Finapres Medical Systems BV. Finometer User Guide. Arnheim, The Netherlands; 2002Google Scholar
  64. 64.
    Soraghan CJ, Fan CW, Hayakawa T, Cronin H, Foran T, Boyle G et al (2014) TILDA Signal Processing Framework (SPF) for the analysis of BP responses to standing in epidemiological and clinical studies. In: IEEE-EMBS international conference on biomedical and health informatics (BHI), pp 793–6Google Scholar
  65. 65.
    van der Velde N, van den Meiracker AH, Stricker BHC, van der Cammen TJM (2007) Measuring orthostatic hypotension with the Finometer device: is a blood pressure drop of one heartbeat clinically relevant? Blood Press Monit 12(3):167–171CrossRefGoogle Scholar
  66. 66.
    Heldt T, Shim EB, Kamm RD, Mark RG (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol Bethesda Md 1985 92(3):1239–1254Google Scholar
  67. 67.
    Berkelmans GFN, Kuipers S, Westerhof BE, Spoelstra-de Man AME, Smulders YM (2018) Comparing volume-clamp method and intra-arterial blood pressure measurements in patients with atrial fibrillation admitted to the intensive or medium care unit. J Clin Monit Comput 32(3):439–446CrossRefGoogle Scholar
  68. 68.
    Chui CK, Chen G (2012) Signal processing and systems theory: selected topics. Softcover reprint of the original 1st ed. 1992 edn. Springer, BerlinGoogle Scholar
  69. 69.
    Julien C (2006) The enigma of Mayer waves: facts and models. Cardiovasc Res 70(1):12–21CrossRefGoogle Scholar
  70. 70.
    Norcliffe-Kaufmann L, Kaufmann H, Palma J-A, Shibao CA, Biaggioni I, Peltier AC et al (2018) Orthostatic heart rate changes in patients with autonomic failure caused by neurodegenerative synucleinopathies. Ann Neurol 83(3):522–531CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ciarán Finucane
    • 1
    • 2
    • 5
    Email author
  • V. K. van Wijnen
    • 3
  • C. W. Fan
    • 4
  • C. Soraghan
    • 1
    • 2
  • L. Byrne
    • 2
  • B. E. Westerhof
    • 6
    • 7
  • R. Freeman
    • 8
  • A. Fedorowski
    • 9
    • 10
  • M. P. M. Harms
    • 3
  • W. Wieling
    • 11
  • R. Kenny
    • 2
    • 5
  1. 1.Department of Medical Physics and BioengineeringMercer’s Institute for Successful Ageing, St. James’s HospitalDublin 8Ireland
  2. 2.Mercer’s Institute for Successful Ageing, St. James’s HospitalDublin 8Ireland
  3. 3.Department of Internal MedicineUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  4. 4.Department of GerontologyMater Misericordiae University HospitalDublinIreland
  5. 5.Department of Medical Gerontology, Trinity College DublinThe Irish Longitudinal Study on Ageing (TILDA)DublinIreland
  6. 6.Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
  7. 7.Amsterdam UMC, University of Amsterdam, Medical Biology, Section of Systems Physiology, Amsterdam Cardiovascular SciencesAmsterdamThe Netherlands
  8. 8.Neurology Department, Harvard Medical SchoolBeth Israel Deaconess Medical CenterBostonUSA
  9. 9.Department of Clinical Sciences, Clinical Research CenterLund UniversityMalmöSweden
  10. 10.Department of CardiologySkåne University HospitalMalmöSweden
  11. 11.Department of Internal MedicineAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations