Advertisement

Clinical Autonomic Research

, Volume 29, Issue 4, pp 397–414 | Cite as

Autonomic dysfunction in Parkinson disease and animal models

  • Jeanette M. Metzger
  • Marina E. EmborgEmail author
Review Article

Abstract

Parkinson disease has traditionally been classified as a movement disorder, despite patients’ accounts of diverse symptoms stemming from impairments in numerous body systems. Today, Parkinson disease is increasingly recognized by clinicians and scientists as a complex neurodegenerative disorder featuring both motor and nonmotor manifestations concomitant with pathology throughout all major branches of the nervous system. Dysfunction of the autonomic nervous system, or dysautonomia, is a common feature of Parkinson disease. It produces signs and symptoms that severely affect patients’ quality of life, such as blood pressure dysregulation, hyperhidrosis, and constipation. Treatment options for dysautonomia are limited to symptom alleviation because the cause of these symptoms and Parkinson disease overall are still unknown. Animal models provide a platform to interrogate mechanisms of Parkinson disease-related autonomic nervous system dysfunction and test novel treatment strategies. Several animal models of Parkinson disease are available, each with different effects on the autonomic nervous system. This review critically analyses key dysautonomia signs and symptoms and associated pathology in Parkinson disease patients and relevant findings in animal models. We focus on the cardiovascular system, adrenal medulla, skin/thermoregulation, bladder, pupils, and gastrointestinal tract, to assess the contribution of animal models to the understanding of Parkinson disease autonomic dysfunction.

Keywords

Dysautonomia Parkinson disease Animal models Orthostatic hypotension Constipation Thermoregulation 

Notes

Acknowledgements

This research was supported by grants National Institutes of Health (NIH) P51OD011106, NIH R24OD019803, NIH Kirschstein-NRSA F31HL136047 (J.M.M), and the University of Wisconsin–Madison Office of Vice Chancellor for Research and Graduate Education, Cellular and Molecular Pathology Graduate Program, and Department of Medical Physics.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Parkinson J (2002) An essay on the shaking palsy 1817. J Neuropsychiatry Clin Neurosci 14(2):223–236.  https://doi.org/10.1176/jnp.14.2.223 (discussion 222) PubMedGoogle Scholar
  2. 2.
    Tomic S, Rajkovaca I, Pekic V, Salha T, Misevic S (2017) Impact of autonomic dysfunctions on the quality of life in Parkinson’s disease patients. Acta Neurol Belg 117(1):207–211.  https://doi.org/10.1007/s13760-016-0739-6 PubMedGoogle Scholar
  3. 3.
    Fazio P, Svenningsson P, Cselenyi Z, Halldin C, Farde L, Varrone A (2018) Nigrostriatal dopamine transporter availability in early Parkinson’s disease. Mov Disord.  https://doi.org/10.1002/mds.27316 PubMedGoogle Scholar
  4. 4.
    Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson’s disease. Mov Disord 28(1):24–30.  https://doi.org/10.1002/mds.25032 Google Scholar
  5. 5.
    Nilsson S (2011) Comparative anatomy of the autonomic nervous system. Autono Neurosci 165(1):3–9.  https://doi.org/10.1016/j.autneu.2010.03.018 Google Scholar
  6. 6.
    Goldstein DS, Holmes C, Li ST, Bruce S, Metman LV, Cannon RO (2000) Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med 133(5):338–347PubMedGoogle Scholar
  7. 7.
    Palma JA, Carmona-Abellan MM, Barriobero N, Trevino-Peinado C, Garcia-Lopez M, Fernandez-Jarne E, Luquin MR (2013) Is cardiac function impaired in premotor Parkinson’s disease? A retrospective cohort study. Mov Disord 28(5):591–596.  https://doi.org/10.1002/mds.25431 PubMedGoogle Scholar
  8. 8.
    Gibbons CH, Simon DK, Huang M, Tilley B, Aminoff MJ, Bainbridge JL, Brodsky M, Freeman R, Goudreau J, Hamill RW, Luo ST, Singer C, Videnovic A, Bodis-Wollner I, Wong PS (2017) Autonomic and electrocardiographic findings in Parkinson’s disease. Auton Neurosci 205:93–98.  https://doi.org/10.1016/j.autneu.2017.04.002 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Jain S, Goldstein DS (2012) Cardiovascular dysautonomia in Parkinson disease: from pathophysiology to pathogenesis. Neurobiol Dis 46(3):572–580.  https://doi.org/10.1016/j.nbd.2011.10.025 PubMedGoogle Scholar
  10. 10.
    Matinolli M, Korpelainen JT, Korpelainen R, Sotaniemi KA, Myllyla VV (2009) Orthostatic hypotension, balance and falls in Parkinson’s disease. Mov Disord 24(5):745–751.  https://doi.org/10.1002/mds.22457 PubMedGoogle Scholar
  11. 11.
    Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, Walker DG, Consortium APsD (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with lewy body disorders. Acta Neuropathol 119(6):689–702.  https://doi.org/10.1007/s00401-010-0664-3 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Greene JG (2014) Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson’s disease. Antioxid Redox Signal 21(4):649–667.  https://doi.org/10.1089/ars.2014.5859 PubMedGoogle Scholar
  13. 13.
    Gjerloff T, Fedorova T, Knudsen K, Munk OL, Nahimi A, Jacobsen S, Danielsen EH, Terkelsen AJ, Hansen J, Pavese N, Brooks DJ, Borghammer P (2015) Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain 138(Pt 3):653–663.  https://doi.org/10.1093/brain/awu369 PubMedGoogle Scholar
  14. 14.
    Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601.  https://doi.org/10.1002/mds.26424 Google Scholar
  15. 15.
    Kashihara K, Imamura T, Shinya T (2010) Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord 16(4):252–255.  https://doi.org/10.1016/j.parkreldis.2009.12.010 PubMedGoogle Scholar
  16. 16.
    Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y (2005) Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 76(2):249–251.  https://doi.org/10.1136/jnnp.2004.037028 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Li ST, Dendi R, Holmes C, Goldstein DS (2002) Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Ann Neurol 52(2):220–223.  https://doi.org/10.1002/ana.10236 PubMedGoogle Scholar
  18. 18.
    Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, Rascol O, Senard JM (2003) Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord 18(8):890–897.  https://doi.org/10.1002/mds.10461 PubMedGoogle Scholar
  19. 19.
    Wong KK, Raffel DM, Koeppe RA, Frey KA, Bohnen NI, Gilman S (2012) Pattern of cardiac sympathetic denervation in idiopathic Parkinson disease studied with 11C hydroxyephedrine PET. Radiology 265(1):240–247.  https://doi.org/10.1148/radiol.12112723 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wong KK, Raffel DM, Bohnen NI, Altinok G, Gilman S, Frey KA (2017) 2-Year natural decline of cardiac sympathetic innervation in idiopathic parkinson disease studied with 11C-hydroxyephedrine PET. J Nuclear Med 58(2):326–331.  https://doi.org/10.2967/jnumed.116.176891 Google Scholar
  21. 21.
    Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takahashi H (2008) Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 131(Pt 3):642–650.  https://doi.org/10.1093/brain/awm302 PubMedGoogle Scholar
  22. 22.
    Iwanaga K, Wakabayashi K, Yoshimoto M, Tomita I, Satoh H, Takashima H, Satoh A, Seto M, Tsujihata M, Takahashi H (1999) Lewy body-type degeneration in cardiac plexus in Parkinson’s and incidental lewy body diseases. Neurology 52(6):1269–1271PubMedGoogle Scholar
  23. 23.
    Wakabayashi K, Takahashi H (1997) The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathol 94(3):287–289PubMedGoogle Scholar
  24. 24.
    Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F (2000) The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 24(6):655–668PubMedGoogle Scholar
  25. 25.
    Gai WP, Geffen LB, Denoroy L, Blessing WW (1993) Loss of C1 and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease. Ann Neurol 33(4):357–367.  https://doi.org/10.1002/ana.410330405 PubMedGoogle Scholar
  26. 26.
    Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST (2002) Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 58(8):1247–1255PubMedGoogle Scholar
  27. 27.
    Stoddard SL, Merkel GJ, Cook JA, Zinsmeister AR, Carmichael SW (1994) Adrenal medulla and Parkinson’s disease. Microsc Res Tech 29(2):151–154.  https://doi.org/10.1002/jemt.1070290212 PubMedGoogle Scholar
  28. 28.
    Wakabayashi K, Takahashi H (1997) Neuropathology of autonomic nervous system in Parkinson’s disease. Eur Neurol 38(Suppl 2):2–7PubMedGoogle Scholar
  29. 29.
    Sugie M, Goto J, Kawamura M, Ota H (2005) Increased norepinephrine-associated adrenomedullary inclusions in Parkinson’s disease. Pathol Int 55(3):130–136.  https://doi.org/10.1111/j.1440-1827.2005.01800.x PubMedGoogle Scholar
  30. 30.
    Umehara T, Oka H, Nakahara A, Matsuno H, Toyoda C (2018) High norepinephrinergic orthostatic hypotension in early Parkinson’s disease. Parkinsonism Relat Disord.  https://doi.org/10.1016/j.parkreldis.2018.05.025 PubMedGoogle Scholar
  31. 31.
    Boulant JA (1994) Neurophysiology of thermoregulation: role of hypothalamic neuronal networks. In: Milton AS (ed) Temperature regulation: recent physiological and pharmacological advances. Birkhäuser Basel, Base, pp 93–101.  https://doi.org/10.1007/978-3-0348-8491-4_16 Google Scholar
  32. 32.
    Swinn L, Schrag A, Viswanathan R, Bloem BR, Lees A, Quinn N (2003) Sweating dysfunction in Parkinson’s disease. Mov Disord 18(12):1459–1463.  https://doi.org/10.1002/mds.10586 PubMedGoogle Scholar
  33. 33.
    Beitz JM (2013) Skin and wound issues in patients with Parkinson’s disease: an overview of common disorders. Ostomy Wound Manag 59(6):26–36Google Scholar
  34. 34.
    Jost WH (2017) Autonomic dysfunction in Parkinson’s disease: cardiovascular symptoms, thermoregulation, and urogenital symptoms. Int Rev Neurobiol 134:771–785.  https://doi.org/10.1016/bs.irn.2017.04.003 PubMedGoogle Scholar
  35. 35.
    Schestatsky P, Valls-Sole J, Ehlers JA, Rieder CR, Gomes I (2006) Hyperhidrosis in Parkinson’s disease. Mov Disord 21(10):1744–1748.  https://doi.org/10.1002/mds.21006 PubMedGoogle Scholar
  36. 36.
    Shindo K, Iida H, Watanabe H, Ohta E, Nagasaka T, Shiozawa Z (2008) Sympathetic sudomotor and vasoconstrictive neural function in patients with Parkinson’s disease. Parkinsonism Relat Disord 14(7):548–552.  https://doi.org/10.1016/j.parkreldis.2007.12.004 PubMedGoogle Scholar
  37. 37.
    Dabby R, Djaldetti R, Shahmurov M, Treves TA, Gabai B, Melamed E, Sadeh M, Avinoach I (2006) Skin biopsy for assessment of autonomic denervation in Parkinson’s disease. J Neural Trans 113(9):1169–1176.  https://doi.org/10.1007/s00702-005-0431-0 Google Scholar
  38. 38.
    Wang N, Gibbons CH, Lafo J, Freeman R (2013) alpha-Synuclein in cutaneous autonomic nerves. Neurology 81(18):1604–1610.  https://doi.org/10.1212/WNL.0b013e3182a9f449 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Gibbons CH, Garcia J, Wang N, Shih LC, Freeman R (2016) The diagnostic discrimination of cutaneous alpha-synuclein deposition in Parkinson disease. Neurology 87(5):505–512.  https://doi.org/10.1212/wnl.0000000000002919 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Doppler K, Ebert S, Uceyler N, Trenkwalder C, Ebentheuer J, Volkmann J, Sommer C (2014) Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology. Acta Neuropathol 128(1):99–109.  https://doi.org/10.1007/s00401-014-1284-0 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Siepmann T, Penzlin AI, Illigens BM, Reichmann H (2017) Should skin biopsies be performed in patients suspected of having Parkinson’s disease? Parkinsons Dis 2017:6064974.  https://doi.org/10.1155/2017/6064974 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Politis M, Piccini P, Pavese N, Koh SB, Brooks DJ (2008) Evidence of dopamine dysfunction in the hypothalamus of patients with Parkinson’s disease: an in vivo 11C-raclopride PET study. Exp Neurol 214(1):112–116.  https://doi.org/10.1016/j.expneurol.2008.07.021 Google Scholar
  43. 43.
    Sandyk R, Iacono RP, Bamford CR (1987) The hypothalamus in Parkinson disease. Ital J Neurol Sci 8(3):227–234PubMedGoogle Scholar
  44. 44.
    McDonald C, Winge K, Burn DJ (2017) Lower urinary tract symptoms in Parkinson’s disease: prevalence, aetiology and management. Parkinsonism Relat Disord 35:8–16.  https://doi.org/10.1016/j.parkreldis.2016.10.024 PubMedGoogle Scholar
  45. 45.
    Uchiyama T, Sakakibara R, Yamamoto T, Ito T, Yamaguchi C, Awa Y, Yanagisawa M, Higuchi Y, Sato Y, Ichikawa T, Yamanishi T, Hattori T, Kuwabara S (2011) Urinary dysfunction in early and untreated Parkinson’s disease. J Neurol Neurosurg Psychiatry 82(12):1382–1386.  https://doi.org/10.1136/jnnp.2011.241075 PubMedGoogle Scholar
  46. 46.
    Sakakibara R, Tateno F, Yamamoto T, Uchiyama T, Yamanishi T (2018) Urological dysfunction in synucleinopathies: epidemiology, pathophysiology and management. Clin Auton Res 28(1):83–101.  https://doi.org/10.1007/s10286-017-0480-0 PubMedGoogle Scholar
  47. 47.
    Borghammer P, Knudsen K, Fedorova TD, Brooks DJ (2017) Imaging Parkinson’s disease below the neck. NPJ Parkinsons Dis.  https://doi.org/10.1038/s41531-017-0017-1 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Seki S, Igawa Y, Kaidoh K, Ishizuka O, Nishizawa O, Andersson KE (2001) Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn 20(1):105–113PubMedGoogle Scholar
  49. 49.
    Winge K, Friberg L, Werdelin L, Nielsen KK, Stimpel H (2005) Relationship between nigrostriatal dopaminergic degeneration, urinary symptoms, and bladder control in Parkinson’s disease. Eur J Neurol 12(11):842–850.  https://doi.org/10.1111/j.1468-1331.2005.01087.x PubMedGoogle Scholar
  50. 50.
    Del Tredici K, Braak H (2012) Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol 124(5):643–664.  https://doi.org/10.1007/s00401-012-1028-y Google Scholar
  51. 51.
    VanderHorst VG, Samardzic T, Saper CB, Anderson MP, Nag S, Schneider JA, Bennett DA, Buchman AS (2015) alpha-Synuclein pathology accumulates in sacral spinal visceral sensory pathways. Ann Neurol 78(1):142–149.  https://doi.org/10.1002/ana.24430 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Armstrong R (2015) Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis 5:715–726.  https://doi.org/10.3233/jpd-150686 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Giza E, Fotiou D, Bostantjopoulou S, Katsarou Z, Karlovasitou A (2011) Pupil light reflex in Parkinson’s disease: evaluation with pupillometry. Int J Neurosci 121(1):37–43.  https://doi.org/10.3109/00207454.2010.526730 PubMedGoogle Scholar
  54. 54.
    Stergiou V, Fotiou D, Tsiptsios D, Haidich B, Nakou M, Giantselidis C, Karlovasitou A (2009) Pupillometric findings in patients with Parkinson’s disease and cognitive disorder. Int J Psychophysiol 72(2):97–101.  https://doi.org/10.1016/j.ijpsycho.2008.10.010 PubMedGoogle Scholar
  55. 55.
    Yamashita F, Hirayama M, Nakamura T, Takamori M, Hori N, Uchida K, Hama T, Sobue G (2010) Pupillary autonomic dysfunction in multiple system atrophy and Parkinson’s disease: an assessment by eye-drop tests. Clin Auton Res 20(3):191–197.  https://doi.org/10.1007/s10286-009-0051-0 PubMedGoogle Scholar
  56. 56.
    Hunter S (1985) The rostral mesencephalon in Parkinson’s disease and Alzheimer’s disease. Acta Neuropathol 68(1):53–58PubMedGoogle Scholar
  57. 57.
    Del Tredici K, Hawkes CH, Ghebremedhin E, Braak H (2010) Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson’s disease. Acta Neuropathol 119(6):703–713.  https://doi.org/10.1007/s00401-010-0665-2 Google Scholar
  58. 58.
    Srivanitchapoom P, Pandey S, Hallett M (2014) Drooling in Parkinson’s disease: a review. Parkinsonism Relat Disord 20(11):1109–1118.  https://doi.org/10.1016/j.parkreldis.2014.08.013 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Proulx M, de Courval FP, Wiseman MA, Panisset M (2005) Salivary production in Parkinson’s disease. Mov Disord 20(2):204–207.  https://doi.org/10.1002/mds.20189 PubMedGoogle Scholar
  60. 60.
    Heetun ZS, Quigley EM (2012) Gastroparesis and Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 18(5):433–440.  https://doi.org/10.1016/j.parkreldis.2011.12.004 PubMedGoogle Scholar
  61. 61.
    Pazo JH, Belforte JE (2002) Basal ganglia and functions of the autonomic nervous system. Cell Mol Neurobiol 22(5–6):645–654PubMedGoogle Scholar
  62. 62.
    Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF (2015) Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 14(6):625–639.  https://doi.org/10.1016/S1474-4422(15)00007-1 PubMedGoogle Scholar
  63. 63.
    Mu L, Sobotka S, Chen J, Su H, Sanders I, Nyirenda T, Adler CH, Shill HA, Caviness JN, Samanta JE, Sue LI, Beach TG (2013) Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol 72(7):614–623.  https://doi.org/10.1097/NEN.0b013e3182965886 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Cersosimo MG, Benarroch EE (2012) Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 313(1–2):57–63.  https://doi.org/10.1016/j.jns.2011.09.030 Google Scholar
  65. 65.
    Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, Hastings TG, Greenamyre JT (2016) alpha-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci Transl Med 8(342):342ra378.  https://doi.org/10.1126/scitranslmed.aaf3634 Google Scholar
  66. 66.
    Arai E, Arai M, Uchiyama T, Higuchi Y, Aoyagi K, Yamanaka Y, Yamamoto T, Nagano O, Shiina A, Maruoka D, Matsumura T, Nakagawa T, Katsuno T, Imazeki F, Saeki N, Kuwabara S, Yokosuka O (2012) Subthalamic deep brain stimulation can improve gastric emptying in Parkinson’s disease. Brain 135(Pt 5):1478–1485.  https://doi.org/10.1093/brain/aws086 PubMedGoogle Scholar
  67. 67.
    Yu QJ, Yu SY, Zuo LJ, Lian TH, Hu Y, Wang RD, Piao YS, Guo P, Liu L, Jin Z, Li LX, Chan P, Chen SD, Wang XM, Zhang W (2018) Parkinson disease with constipation: clinical features and relevant factors. Sci Rep 8(1):567.  https://doi.org/10.1038/s41598-017-16790-8 PubMedPubMedCentralGoogle Scholar
  68. 68.
    Knudsen K, Haase AM, Fedorova TD, Bekker AC, Ostergaard K, Krogh K, Borghammer P (2017) Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J Parkinsons Dis 7(3):471–479.  https://doi.org/10.3233/jpd-171131 PubMedGoogle Scholar
  69. 69.
    Yu T, Wang Y, Wu G, Xu Q, Tang Y, Lin L (2016) High-resolution anorectal manometry in Parkinson disease with defecation disorder: a comparison with functional defecation disorder. J Clin Gastroenterol 50(7):566–571.  https://doi.org/10.1097/mcg.0000000000000469 PubMedGoogle Scholar
  70. 70.
    Singaram C, Ashraf W, Gaumnitz EA, Torbey C, Sengupta A, Pfeiffer R, Quigley EM (1995) Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation. Lancet 346(8979):861–864PubMedGoogle Scholar
  71. 71.
    Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG (2012) Parkinson’s disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 124(5):665–680.  https://doi.org/10.1007/s00401-012-1040-2 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Corbille AG, Coron E, Neunlist M, Derkinderen P, Lebouvier T (2014) Appraisal of the dopaminergic and noradrenergic innervation of the submucosal plexus in PD. J Parkinsons Dis 4(4):571–576.  https://doi.org/10.3233/jpd-140422 PubMedGoogle Scholar
  73. 73.
    Barrenschee M, Zorenkov D, Bottner M, Lange C, Cossais F, Scharf AB, Deuschl G, Schneider SA, Ellrichmann M, Fritscher-Ravens A, Wedel T (2017) Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson’s disease. Acta Neuropathol Commun 5(1):1.  https://doi.org/10.1186/s40478-016-0408-2 PubMedPubMedCentralGoogle Scholar
  74. 74.
    Petrovitch H, Abbott RD, Ross GW, Nelson J, Masaki KH, Tanner CM, Launer LJ, White LR (2009) Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov Disord 24(3):371–376.  https://doi.org/10.1002/mds.22360 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Hinkle JT, Perepezko K, Mills KA, Mari Z, Butala A, Dawson TM, Pantelyat A, Rosenthal LS, Pontone GM (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord.  https://doi.org/10.1016/j.parkreldis.2018.08.010 PubMedGoogle Scholar
  76. 76.
    Edwards LL, Quigley EM, Harned RK, Hofman R, Pfeiffer RF (1993) Defecatory function in Parkinson’s disease: response to apomorphine. Ann Neurol 33(5):490–493.  https://doi.org/10.1002/ana.410330512 PubMedGoogle Scholar
  77. 77.
    Pellegrini C, Colucci R, Antonioli L, Barocelli E, Ballabeni V, Bernardini N, Blandizzi C, de Jonge WJ, Fornai M (2016) Intestinal dysfunction in Parkinson’s disease: lessons learned from translational studies and experimental models. Neurogastroenterol Motil 28(12):1781–1791.  https://doi.org/10.1111/nmo.12933 PubMedGoogle Scholar
  78. 78.
    Killinger BA, Madaj Z, Sikora JW, Rey N, Haas AJ, Vepa Y, Lindqvist D, Chen H, Thomas PM, Brundin P, Brundin L, Labrie V (2018) The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.aar5280 PubMedGoogle Scholar
  79. 79.
    Blesa J, Przedborski S (2014) Parkinson’s disease: animal models and dopaminergic cell vulnerability. Front Neuroanat 8:155.  https://doi.org/10.3389/fnana.2014.00155 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Blesa J, Trigo‐Damas I, Quiroga‐Varela A, Rey NLGd (2016) Animal Models of Parkinson’s Disease. In: Kozubski JDaW (ed) Challenges in Parkinson’s Disease. IntechOpen, London.  https://doi.org/10.5772/63328 Google Scholar
  81. 81.
    Bove J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76.  https://doi.org/10.1016/j.neuroscience.2011.10.057 PubMedGoogle Scholar
  82. 82.
    Joers V, Seneczko K, Goecks NC, Kamp TJ, Hacker TA, Brunner KG, Engle JW, Barnhart TE, Nickles RJ, Holden JE, Emborg ME (2012) Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys. PLoS One 7(4):e35371.  https://doi.org/10.1371/journal.pone.0035371 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Metzger JM, Jones CA, Emborg ME (2018) Parkinson’s disease in humans and in non-human primate aging and neurotoxin models. In: Conn JRaPM (ed) Conn’s Handbook of Models for Human Aging, 2nd edn. Academic Press, London, pp 617–640Google Scholar
  84. 84.
    Johnson ME, Bobrovskaya L (2015) An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology 46:101–116.  https://doi.org/10.1016/j.neuro.2014.12.002 PubMedGoogle Scholar
  85. 85.
    Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW (2005) Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci 88(1):193–201.  https://doi.org/10.1093/toxsci/kfi304 PubMedGoogle Scholar
  86. 86.
    Rodriguez-Pallares J, Parga JA, Muñoz A, Rey P, Guerra MJ, Labandeira-Garcia JL (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103(1):145–156.  https://doi.org/10.1111/j.1471-4159.2007.04699.x PubMedGoogle Scholar
  87. 87.
    Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Parkinsons Dis 1(1):19–33.  https://doi.org/10.3233/jpd-2011-11023 PubMedPubMedCentralGoogle Scholar
  88. 88.
    Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20(3):898–906.  https://doi.org/10.1016/j.nbd.2005.05.028 PubMedGoogle Scholar
  89. 89.
    Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuro Rep 11(1):211–213Google Scholar
  90. 90.
    Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22(2):404–420.  https://doi.org/10.1016/j.nbd.2005.12.003 PubMedGoogle Scholar
  91. 91.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMedGoogle Scholar
  92. 92.
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473Google Scholar
  93. 93.
    Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274(14):9843–9846PubMedGoogle Scholar
  94. 94.
    Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85.  https://doi.org/10.1016/j.arr.2017.12.007 PubMedGoogle Scholar
  95. 95.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506.  https://doi.org/10.1038/nm1747 PubMedGoogle Scholar
  96. 96.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503.  https://doi.org/10.1038/nm1746 PubMedGoogle Scholar
  97. 97.
    Brundin P, Melki R (2017) Prying into the prion hypothesis for Parkinson’s disease. J Neurosci 37(41):9808–9818.  https://doi.org/10.1523/jneurosci.1788-16.2017 PubMedPubMedCentralGoogle Scholar
  98. 98.
    Recasens A, Ulusoy A, Kahle PJ, Di Monte DA, Dehay B (2018) In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 373(1):183–193.  https://doi.org/10.1007/s00441-017-2730-9 PubMedGoogle Scholar
  99. 99.
    Fuller RW, Hahn RA, Snoddy HD, Wikel JH (1984) Depletion of cardiac norepinephrine in rats and mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Pharmacol 33(19):2957–2960PubMedGoogle Scholar
  100. 100.
    Joers V, Emborg ME (2014) Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson’s disease. Am J Nucl Med Mol Imaging 4(2):125–159PubMedPubMedCentralGoogle Scholar
  101. 101.
    Jiang YH, Jiang P, Yang JL, Ma DF, Lin HQ, Su WG, Wang Z, Li X (2015) Cardiac dysregulation and myocardial injury in a 6-hydroxydopamine-induced rat model of sympathetic denervation. PLoS One 10(7):e0133971.  https://doi.org/10.1371/journal.pone.0133971 PubMedPubMedCentralGoogle Scholar
  102. 102.
    Goldstein DS, Grossman E, Tamrat M, Chang PC, Eisenhofer G, Bacher J, Kirk KL, Bacharach S, Kopin IJ (1991) Positron emission imaging of cardiac sympathetic innervation and function using 18F-6-fluorodopamine: effects of chemical sympathectomy by 6-hydroxydopamine. J Hypertens 9(5):417–423PubMedGoogle Scholar
  103. 103.
    Joers V, Dilley K, Rahman S, Jones C, Shultz J, Simmons H, Emborg ME (2014) Cardiac sympathetic denervation in 6-OHDA-treated nonhuman primates. PLoS One 9(8):e104850.  https://doi.org/10.1371/journal.pone.0104850 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Metzger JM, Moore CF, Boettcher CA, Brunner KG, Fleddermann RA, Matsoff HN, Resnikoff HA, Bondarenko V, Kamp TJ, Hacker TA, Barnhart TE, Lao PJ, Christian BT, Nickles RJ, Gallagher CL, Holden JE, Emborg ME (2018) In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. NPJ Parkinsons Dis 4:22.  https://doi.org/10.1038/s41531-018-0057-1 PubMedPubMedCentralGoogle Scholar
  105. 105.
    Ariza D, Lopes FN, Crestani CC, Martins-Pinge MC (2015) Chemoreflex and baroreflex alterations in Parkinsonism induced by 6-OHDA in unanesthetized rats. Neurosci Lett 607:77–82.  https://doi.org/10.1016/j.neulet.2015.09.024 PubMedGoogle Scholar
  106. 106.
    Silva AS, Ariza D, Dias DP, Crestani CC, Martins-Pinge MC (2015) Cardiovascular and autonomic alterations in rats with Parkinsonism induced by 6-OHDA and treated with L-DOPA. Life Sci 127:82–89.  https://doi.org/10.1016/j.lfs.2015.01.032 PubMedGoogle Scholar
  107. 107.
    Yu JG, Wu J, Shen FM, Cai GJ, Liu JG, Su DF (2008) Arterial baroreflex dysfunction fails to mimic Parkinson’s disease in rats. J Pharmacol Sci 108(1):56–62PubMedGoogle Scholar
  108. 108.
    Ben V, Bruguerolle B (2000) Effects of bilateral striatal 6-OHDA lesions on circadian rhythms in the rat: a radiotelemetric study. Life Sci 67(13):1549–1558PubMedGoogle Scholar
  109. 109.
    Boulamery A, Simon N, Vidal J, Bruguerolle B (2010) Effects of L-Dopa on circadian rhythms of 6-OHDA striatal lesioned rats: a radiotelemetric study. Chronobiol Int 27(2):251–264.  https://doi.org/10.3109/07420521003664213 PubMedGoogle Scholar
  110. 110.
    Falquetto B, Tuppy M, Potje SR, Moreira TS, Antoniali C, Takakura AC (2017) Cardiovascular dysfunction associated with neurodegeneration in an experimental model of Parkinson’s disease. Brain Res 1657:156–166.  https://doi.org/10.1016/j.brainres.2016.12.008 PubMedGoogle Scholar
  111. 111.
    Sakata M, Sei H, Toida K, Fujihara H, Urushihara R, Morita Y (2002) Mesolimbic dopaminergic system is involved in diurnal blood pressure regulation. Brain Res 928(1–2):194–201PubMedGoogle Scholar
  112. 112.
    Zhang Z, Du X, Xu H, Xie J, Jiang H (2015) Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinson’s disease rats. Eur J Neurosci 42(6):2346–2355.  https://doi.org/10.1111/ejn.13012 PubMedGoogle Scholar
  113. 113.
    Hallett PJ, McLean JR, Kartunen A, Langston JW, Isacson O (2012) alpha-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol Dis 47(2):258–267.  https://doi.org/10.1016/j.nbd.2012.04.009 PubMedPubMedCentralGoogle Scholar
  114. 114.
    Fleming SM, Jordan MC, Mulligan CK, Masliah E, Holden JG, Millard RW, Chesselet MF, Roos KP (2013) Impaired baroreflex function in mice overexpressing alpha-synuclein. Front Neurol 4:103.  https://doi.org/10.3389/fneur.2013.00103 PubMedPubMedCentralGoogle Scholar
  115. 115.
    Griffioen KJ, Rothman SM, Ladenheim B, Wan R, Vranis N, Hutchison E, Okun E, Cadet JL, Mattson MP (2013) Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant alpha-synuclein. Neurobiol Aging 34(3):928–935.  https://doi.org/10.1016/j.neurobiolaging.2012.07.008 PubMedGoogle Scholar
  116. 116.
    Kuo YM, Li Z, Jiao Y, Gaborit N, Pani AK, Orrison BM, Bruneau BG, Giasson BI, Smeyne RJ, Gershon MD, Nussbaum RL (2010) Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum Mol Genet 19(9):1633–1650.  https://doi.org/10.1093/hmg/ddq038 PubMedPubMedCentralGoogle Scholar
  117. 117.
    Billia F, Hauck L, Grothe D, Konecny F, Rao V, Kim RH, Mak TW (2013) Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo. Proc Natl Acad Sci USA 110(15):6085–6090.  https://doi.org/10.1073/pnas.1303444110 PubMedGoogle Scholar
  118. 118.
    Dorn GW (1857) 2nd (2016) central Parkin: the evolving role of Parkin in the heart. Biochim Biophys Acta 8:1307–1312.  https://doi.org/10.1016/j.bbabio.2016.03.014 Google Scholar
  119. 119.
    Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW (2011) PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proc Natl Acad Sci USA 108(23):9572–9577.  https://doi.org/10.1073/pnas.1106291108 PubMedGoogle Scholar
  120. 120.
    Baptista MA, Dave KD, Frasier MA, Sherer TB, Greeley M, Beck MJ, Varsho JS, Parker GA, Moore C, Churchill MJ, Meshul CK, Fiske BK (2013) Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS One 8(11):e80705.  https://doi.org/10.1371/journal.pone.0080705 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Algeri S, Ambrosio S, Garofalo P, Gerli P (1987) Peripheral effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its main metabolite 1-methyl-4-phenylpyridinium ion (MPP +) in the rat. Eur J Pharmacol 141(2):309–312PubMedGoogle Scholar
  122. 122.
    Johnson ME, Lim Y, Senthilkumaran M, Zhou XF, Bobrovskaya L (2015) Investigation of tyrosine hydroxylase and BDNF in a low-dose rotenone model of Parkinson’s disease. J Chem Neuroanat 70:33–41.  https://doi.org/10.1016/j.jchemneu.2015.11.002 PubMedGoogle Scholar
  123. 123.
    Farrell KF, Krishnamachari S, Villanueva E, Lou H, Alerte TN, Peet E, Drolet RE, Perez RG (2014) Non-motor parkinsonian pathology in aging A53T alpha-synuclein mice is associated with progressive synucleinopathy and altered enzymatic function. J Neurochem 128(4):536–546.  https://doi.org/10.1111/jnc.12481 PubMedGoogle Scholar
  124. 124.
    Suaudeau C, Dourmap N, Costentin J (1995) Rapid and long lasting reduction of the hypothermic effect of a D2 dopamine agonist after an intracerebroventricular injection of 6-hydroxydopamine. Neuropharmacology 34(1):101–105PubMedGoogle Scholar
  125. 125.
    Jiao Y, Dou Y, Lockwood G, Pani A, Jay Smeyne R (2015) Acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or paraquat on core temperature in C57BL/6 J mice. J Parkinsons Dis 5(2):389–401.  https://doi.org/10.3233/jpd-140424 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Kamberov YG, Karlsson EK, Kamberova GL, Lieberman DE, Sabeti PC, Morgan BA, Tabin CJ (2015) A genetic basis of variation in eccrine sweat gland and hair follicle density. Proc Natl Acad Sci USA 112(32):9932–9937.  https://doi.org/10.1073/pnas.1511680112 PubMedGoogle Scholar
  127. 127.
    Rao MS, Jaszczak E, Landis SC (1994) Innervation of footpads of normal and mutant mice lacking sweat glands. J Comp Neurol 346(4):613–625.  https://doi.org/10.1002/cne.903460412 PubMedGoogle Scholar
  128. 128.
    Yodlowski ML, Fredieu JR, Landis SC (1984) Neonatal 6-hydroxydopamine treatment eliminates cholinergic sympathetic innervation and induces sensory sprouting in rat sweat glands. J Neurosci 4(6):1535–1548PubMedGoogle Scholar
  129. 129.
    Soler R, Fullhase C, Santos C, Andersson KE (2011) Development of bladder dysfunction in a rat model of dopaminergic brain lesion. Neurourol Urodyn 30(1):188–193.  https://doi.org/10.1002/nau.20917 PubMedGoogle Scholar
  130. 130.
    Yoshimura N, Kuno S, Chancellor MB, De Groat WC, Seki S (2003) Dopaminergic mechanisms underlying bladder hyperactivity in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Br J Pharmacol 139(8):1425–1432.  https://doi.org/10.1038/sj.bjp.0705388 PubMedPubMedCentralGoogle Scholar
  131. 131.
    Kitta T, Chancellor MB, de Groat WC, Shinohara N, Yoshimura N (2016) Role of the anterior cingulate cortex in the control of micturition reflex in a rat model of Parkinson’s disease. J Urol 195(5):1613–1620.  https://doi.org/10.1016/j.juro.2015.11.039 PubMedGoogle Scholar
  132. 132.
    Campeau L, Soler R, Sittadjody S, Pareta R, Nomiya M, Zarifpour M, Opara EC, Yoo JJ, Andersson KE (2014) Effects of allogeneic bone marrow derived mesenchymal stromal cell therapy on voiding function in a rat model of Parkinson disease. J Urol 191(3):850–859.  https://doi.org/10.1016/j.juro.2013.08.026 PubMedGoogle Scholar
  133. 133.
    Albanese A, Jenner P, Marsden CD, Stephenson JD (1988) Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 87(1–2):46–50PubMedGoogle Scholar
  134. 134.
    Yoshimura N, Mizuta E, Yoshida O, Kuno S (1998) Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther 286(1):228–233PubMedGoogle Scholar
  135. 135.
    Mitra R, Aronsson P, Winder M, Tobin G, Bergquist F, Carlsson T (2015) Local change in urinary bladder contractility following CNS dopamine denervation in the 6-OHDA rat model of Parkinson’s disease. J Parkinsons Dis 5(2):301–311.  https://doi.org/10.3233/jpd-140509 PubMedPubMedCentralGoogle Scholar
  136. 136.
    Pritchard S, Jackson MJ, Hikima A, Lione L, Benham CD, Chaudhuri KR, Rose S, Jenner P, Iravani MM (2017) Altered detrusor contractility in MPTP-treated common marmosets with bladder hyperreflexia. PLoS One 12(5):e0175797.  https://doi.org/10.1371/journal.pone.0175797 PubMedPubMedCentralGoogle Scholar
  137. 137.
    Hamill RW, Tompkins JD, Girard BM, Kershen RT, Parsons RL, Vizzard MA (2012) Autonomic dysfunction and plasticity in micturition reflexes in human alpha-synuclein mice. Dev Neurobiol 72(6):918–936.  https://doi.org/10.1002/dneu.20978 PubMedPubMedCentralGoogle Scholar
  138. 138.
    Tereshchenko LV, Anisimov VN, Shul’govsky VV, Latanov AV (2015) Early changes in saccadic eye movement in hemiparkinsonian MPTP-treated monkeys. Perception 44(8–9):1054–1063.  https://doi.org/10.1177/0301006615596868 PubMedGoogle Scholar
  139. 139.
    Lawrence MS, Redmond DE Jr (1991) MPTP lesions and dopaminergic drugs alter eye blink rate in African green monkeys. Pharmacol Biochem Behav 38(4):869–874PubMedGoogle Scholar
  140. 140.
    Wu XH, Qian KW, Xu GZ, Li YY, Ma YY, Huang F, Wang YQ, Zhou X, Qu J, Yang XL, Zhong YM, Weng SJ (2016) The role of retinal dopamine in C57BL/6 mouse refractive development as revealed by intravitreal administration of 6-hydroxydopamine. Invest Ophthalmol Vis Sci 57(13):5393–5404.  https://doi.org/10.1167/iovs.16-19543 PubMedGoogle Scholar
  141. 141.
    Cuenca N, Herrero MT, Angulo A, de Juan E, Martinez-Navarrete GC, Lopez S, Barcia C, Martin-Nieto J (2005) Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. J Comp Neurol 493(2):261–273.  https://doi.org/10.1002/cne.20761 PubMedGoogle Scholar
  142. 142.
    Cavallotti C, Frati A, Sagnelli P, Pescosolido N (2005) Re-evaluation and quantification of the different sources of nerve fibres supplying the rat eye. J Anat 206(3):217–224.  https://doi.org/10.1111/j.1469-7580.2005.00390.x PubMedPubMedCentralGoogle Scholar
  143. 143.
    Luthman J, Sundstrom E (1990) No apparent difference in the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the sympathetic system in NMRI and C57 BL/6 mice. Toxicol Lett 54(1):83–92PubMedGoogle Scholar
  144. 144.
    Ghilardi MF, Bodis-Wollner I, Onofrj MC, Marx MS, Glover AA (1988) Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111(Pt 1):131–149PubMedGoogle Scholar
  145. 145.
    Colasanti BK, Kosa JE, Trotter RR (1978) Responsiveness of the rabbit eye to adrenergic and cholinergic agonists after treatment with 6-hydroxydopamine or alpha-methyl-para-tyrosine: part I-Pupillary changes. Ann Ophthalmol 10(8):1067–1074PubMedGoogle Scholar
  146. 146.
    Ghilardi MF, Marx MS, Bodis-Wollner I, Camras CB, Glover AA (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25(4):357–364.  https://doi.org/10.1002/ana.410250407 PubMedGoogle Scholar
  147. 147.
    Surguchov A, McMahan B, Masliah E, Surgucheva I (2001) Synucleins in ocular tissues. J Neurosci Res 65(1):68–77.  https://doi.org/10.1002/jnr.1129 PubMedGoogle Scholar
  148. 148.
    Price DL, Rockenstein E, Mante M, Adame A, Overk C, Spencer B, Duong-Polk KX, Bonhaus D, Lindsey J, Masliah E (2016) Longitudinal live imaging of retinal alpha-synuclein:GFP deposits in a transgenic mouse model of Parkinson’s disease/dementia with lewy bodies. Sci Rep 6:29523.  https://doi.org/10.1038/srep29523 PubMedPubMedCentralGoogle Scholar
  149. 149.
    Nuckolls AL, Worley C, Leto C, Zhang H, Morris JK, Stanford JA (2012) Tongue force and tongue motility are differently affected by unilateral vs bilateral nigrostriatal dopamine depletion in rats. Behav Brain Res 234(2):343–348.  https://doi.org/10.1016/j.bbr.2012.07.003 PubMedPubMedCentralGoogle Scholar
  150. 150.
    Cullen KP, Grant LM, Kelm-Nelson CA, Brauer AFL, Bickelhaupt LB, Russell JA, Ciucci MR (2018) Pink1 -/- rats show early-onset swallowing deficits and correlative brainstem pathology. Dysphagia.  https://doi.org/10.1007/s00455-018-9896-5 PubMedPubMedCentralGoogle Scholar
  151. 151.
    Yang KM, Blue KV, Mulholland HM, Kurup MP, Kelm-Nelson CA, Ciucci MR (2018) Characterization of oromotor and limb motor dysfunction in the DJ1 -/- model of Parkinson disease. Behav Brain Res 339:47–56.  https://doi.org/10.1016/j.bbr.2017.10.036 PubMedGoogle Scholar
  152. 152.
    Zheng LF, Wang ZY, Li XF, Song J, Hong F, Lian H, Wang Q, Feng XY, Tang YY, Zhang Y, Zhu JX (2011) Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson’s disease. Brain Res 1420:59–67.  https://doi.org/10.1016/j.brainres.2011.09.006 PubMedGoogle Scholar
  153. 153.
    Pan-Montojo F, Schwarz M, Winkler C, Arnhold M, O’Sullivan GA, Pal A, Said J, Marsico G, Verbavatz JM, Rodrigo-Angulo M, Gille G, Funk RH, Reichmann H (2012) Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep 2:898.  https://doi.org/10.1038/srep00898 PubMedPubMedCentralGoogle Scholar
  154. 154.
    Zheng LF, Song J, Fan RF, Chen CL, Ren QZ, Zhang XL, Feng XY, Zhang Y, Li LS, Zhu JX (2014) The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol (Oxf) 211(2):434–446.  https://doi.org/10.1111/apha.12229 Google Scholar
  155. 155.
    Zhu HC, Zhao J, Luo CY, Li QQ (2012) Gastrointestinal dysfunction in a Parkinson’s disease rat model and the changes of dopaminergic, nitric oxidergic, and cholinergic neurotransmitters in myenteric plexus. J Mol Neurosci 47(1):15–25.  https://doi.org/10.1007/s12031-011-9560-0 PubMedGoogle Scholar
  156. 156.
    Toti L, Travagli RA (2014) Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 307(10):G1013–1023.  https://doi.org/10.1152/ajpgi.00258.2014 PubMedPubMedCentralGoogle Scholar
  157. 157.
    Anselmi L, Toti L, Bove C, Hampton J, Travagli RA (2017) A Nigro–vagal pathway controls gastric motility and is affected in a rat model of parkinsonism. Gastroenterology 153(6):1581–1593.  https://doi.org/10.1053/j.gastro.2017.08.069 PubMedPubMedCentralGoogle Scholar
  158. 158.
    Tian YM, Chen X, Luo DZ, Zhang XH, Xue H, Zheng LF, Yang N, Wang XM, Zhu JX (2008) Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson’s disease. Neuroscience 153(3):634–644.  https://doi.org/10.1016/j.neuroscience.2008.02.033 PubMedGoogle Scholar
  159. 159.
    Anderson G, Noorian AR, Taylor G, Anitha M, Bernhard D, Srinivasan S, Greene JG (2007) Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp Neurol 207(1):4–12.  https://doi.org/10.1016/j.expneurol.2007.05.010 PubMedPubMedCentralGoogle Scholar
  160. 160.
    Greene JG, Noorian AR, Srinivasan S (2009) Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218(1):154–161.  https://doi.org/10.1016/j.expneurol.2009.04.023 PubMedPubMedCentralGoogle Scholar
  161. 161.
    Tasselli M, Chaumette T, Paillusson S, Monnet Y, Lafoux A, Huchet-Cadiou C, Aubert P, Hunot S, Derkinderen P, Neunlist M (2013) Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol Motil 25(3):e183–193.  https://doi.org/10.1111/nmo.12070 PubMedGoogle Scholar
  162. 162.
    Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5(1):e8762.  https://doi.org/10.1371/journal.pone.0008762 PubMedPubMedCentralGoogle Scholar
  163. 163.
    Anselmi L, Bove C, Coleman FH, Le K, Subramanian MP, Venkiteswaran K, Subramanian T, Travagli RA (2018) Ingestion of subthreshold doses of environmental toxins induces ascending Parkinsonism in the rat. NPJ Parkinsons Dis 4:30.  https://doi.org/10.1038/s41531-018-0066-0 PubMedPubMedCentralGoogle Scholar
  164. 164.
    Noorian AR, Rha J, Annerino DM, Bernhard D, Taylor GM, Greene JG (2012) Alpha-synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiol Dis 48(1):9–19.  https://doi.org/10.1016/j.nbd.2012.06.005 PubMedGoogle Scholar
  165. 165.
    Wang L, Magen I, Yuan PQ, Subramaniam SR, Richter F, Chesselet MF, Taché Y (2012) Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol Motil 24(9):e425–436.  https://doi.org/10.1111/j.1365-2982.2012.01974.x PubMedPubMedCentralGoogle Scholar
  166. 166.
    Chesselet MF, Richter F, Zhu C, Magen I, Watson MB, Subramaniam SR (2012) A progressive mouse model of Parkinson’s disease: the Thy1-aSyn (“Line 61”) mice. Neurotherapeutics 9(2):297–314.  https://doi.org/10.1007/s13311-012-0104-2 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820.  https://doi.org/10.1007/s00401-014-1343-6 PubMedGoogle Scholar
  168. 168.
    Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R (2018) Inoculation of alpha-synuclein preformed fibrils into the mouse gastrointestinal tract induces lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener 13(1):21.  https://doi.org/10.1186/s13024-018-0257-5 PubMedPubMedCentralGoogle Scholar
  169. 169.
    Fornai M, Pellegrini C, Antonioli L, Segnani C, Ippolito C, Barocelli E, Ballabeni V, Vegezzi G, Al Harraq Z, Blandini F, Levandis G, Cerri S, Blandizzi C, Bernardini N, Colucci R (2016) Enteric dysfunctions in experimental Parkinson’s disease: alterations of excitatory cholinergic neurotransmission regulating colonic motility in rats. J Pharmacol Exp Ther 356(2):434–444.  https://doi.org/10.1124/jpet.115.228510 PubMedGoogle Scholar
  170. 170.
    Levandis G, Balestra B, Siani F, Rizzo V, Ghezzi C, Ambrosi G, Cerri S, Bonizzi A, Vicini R, Vairetti M, Ferrigno A, Pastoris O, Blandini F (2015) Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: relevance to gastrointestinal dysfunctions in Parkinson’s disease. Neurogastroenterol Motil 27(12):1783–1795.  https://doi.org/10.1111/nmo.12691 PubMedGoogle Scholar
  171. 171.
    Colucci M, Cervio M, Faniglione M, De Angelis S, Pajoro M, Levandis G, Tassorelli C, Blandini F, Feletti F, De Giorgio R, Dellabianca A, Tonini S, Tonini M (2012) Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton Neurosci 169(2):77–86.  https://doi.org/10.1016/j.autneu.2012.04.005 PubMedGoogle Scholar
  172. 172.
    Blandini F, Balestra B, Levandis G, Cervio M, Greco R, Tassorelli C, Colucci M, Faniglione M, Bazzini E, Nappi G, Clavenzani P, Vigneri S, De Giorgio R, Tonini M (2009) Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson’s disease. Neurosci Lett 467(3):203–207.  https://doi.org/10.1016/j.neulet.2009.10.035 Google Scholar
  173. 173.
    Zhang X, Li Y, Liu C, Fan R, Wang P, Zheng L, Hong F, Feng X, Zhang Y, Li L, Zhu J (2015) Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson’s disease rats. Transl Res 166(2):152–162.  https://doi.org/10.1016/j.trsl.2015.02.003 PubMedGoogle Scholar
  174. 174.
    Liu Y, Sun JD, Song LK, Li J, Chu SF, Yuan YH, Chen NH (2015) Environment-contact administration of rotenone: a new rodent model of Parkinson’s disease. Behav Brain Res 294:149–161.  https://doi.org/10.1016/j.bbr.2015.07.058 PubMedGoogle Scholar
  175. 175.
    Arnhold M, Dening Y, Chopin M, Arevalo E, Schwarz M, Reichmann H, Gille G, Funk RH, Pan-Montojo F (2016) Changes in the sympathetic innervation of the gut in rotenone treated mice as possible early biomarker for Parkinson’s disease. Clin Auton Res 26(3):211–222.  https://doi.org/10.1007/s10286-016-0358-6 PubMedPubMedCentralGoogle Scholar
  176. 176.
    Lai F, Jiang R, Xie W, Liu X, Tang Y, Xiao H, Gao J, Jia Y, Bai Q (2018) Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem Res.  https://doi.org/10.1007/s11064-018-2620-x PubMedGoogle Scholar
  177. 177.
    Shultz JM, Resnikoff H, Bondarenko V, Joers V, Meija A, Simmons H, Emborg ME (2016) Neurotoxin-induced catecholaminergic loss in the colonic myenteric plexus of rhesus monkeys. J Alzheimers Dis Parkinsonism.  https://doi.org/10.4172/2161-0460.1000279 PubMedPubMedCentralGoogle Scholar
  178. 178.
    Natale G, Kastsiushenka O, Fulceri F, Ruggieri S, Paparelli A, Fornai F (2010) MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut. Brain Res 1355:195–206.  https://doi.org/10.1016/j.brainres.2010.07.076 PubMedGoogle Scholar
  179. 179.
    Ellett LJ, Hung LW, Munckton R, Sherratt NA, Culvenor J, Grubman A, Furness JB, White AR, Finkelstein DI, Barnham KJ, Lawson VA (2016) Restoration of intestinal function in an MPTP model of Parkinson’s disease. Sci Rep 6:30269.  https://doi.org/10.1038/srep30269 PubMedPubMedCentralGoogle Scholar
  180. 180.
    Yang X, Qian Y, Xu S, Song Y, Xiao Q (2017) Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Front Aging Neurosci 9:441.  https://doi.org/10.3389/fnagi.2017.00441 Google Scholar
  181. 181.
    Wang L, Fleming SM, Chesselet MF, Tache Y (2008) Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. Neuro Rep 19(8):873–876.  https://doi.org/10.1097/WNR.0b013e3282ffda5e Google Scholar
  182. 182.
    Vidal-Martinez G, Vargas-Medrano J, Gil-Tommee C, Medina D, Garza NT, Yang B, Segura-Ulate I, Dominguez SJ, Perez RG (2016) FTY720/fingolimod reduces synucleinopathy and improves gut motility in A53T mice: contributions of pro-brain-derived neurotrophic factor (PRO-BDNF) and mature BDNF. J Biol Chem 291(39):20811–20821.  https://doi.org/10.1074/jbc.M116.744029 PubMedPubMedCentralGoogle Scholar
  183. 183.
    Manfredsson FP, Luk KC, Benskey MJ, Gezer A, Garcia J, Kuhn NC, Sandoval IM, Patterson JR, O’Mara A, Yonkers R, Kordower JH (2018) Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol Dis 112:106–118.  https://doi.org/10.1016/j.nbd.2018.01.008 PubMedPubMedCentralGoogle Scholar
  184. 184.
    Yamashiro K, Tanaka R, Shimo Y, Oyama G, Ogawa T, Umemura A, Hattori N (2018) Cerebral microbleeds and blood pressure abnormalities in Parkinson’s disease. NeurologicalSci 10:5–11.  https://doi.org/10.1016/j.ensci.2017.12.002 Google Scholar
  185. 185.
    Salawu F, Olokoba A (2015) Excessive daytime sleepiness and unintended sleep episodes associated with Parkinson’s disease. Oman Med J 30(1):3–10.  https://doi.org/10.5001/omj.2015.02 PubMedPubMedCentralGoogle Scholar
  186. 186.
    Koller WC, Vetere-Overfield B, Williamson A, Busenbark K, Nash J, Parrish D (1990) Sexual dysfunction in Parkinson’s disease. Clin Neuropharmacol 13(5):461–463PubMedGoogle Scholar
  187. 187.
    Olanow CW, Kieburtz K, Katz R (2017) Clinical approaches to the development of a neuroprotective therapy for PD. Exp Neurol 298(Pt B):246–251.  https://doi.org/10.1016/j.expneurol.2017.06.018 PubMedGoogle Scholar
  188. 188.
    Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimer’s Res Ther 6(4):37.  https://doi.org/10.1186/alzrt269 Google Scholar
  189. 189.
    Radad K, Hassanein K, Moldzio R, Rausch WD (2013) Vascular damage mediates neuronal and non-neuronal pathology following short and long-term rotenone administration in Sprague-Dawley rats. Exp Toxicol Pathol 65(1–2):41–47.  https://doi.org/10.1016/j.etp.2011.05.008 PubMedGoogle Scholar
  190. 190.
    Killeen N (1997) T-cell regulation: Thy-1–hiding in full view. Curr Biol 7(12):R774–777PubMedGoogle Scholar
  191. 191.
    Rodriguez M, Rodriguez-Sabate C, Morales I, Sanchez A, Sabate M (2015) Parkinson’s disease as a result of aging. Aging Cell 14(3):293–308.  https://doi.org/10.1111/acel.12312 PubMedPubMedCentralGoogle Scholar
  192. 192.
    Li X, Yang W, Chen M, Liu C, Yu S (2018) Age-dependent elevations of oligomeric and phosphorylated alpha-synuclein synchronously occurs in the brain and gastrointestinal tract of cynomolgus monkeys. Neurosci Lett 662:276–282.  https://doi.org/10.1016/j.neulet.2017.10.047 PubMedGoogle Scholar
  193. 193.
    Chu Y, Kordower JH (2007) Age-associated increases of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis 25(1):134–149.  https://doi.org/10.1016/j.nbd.2006.08.021 PubMedGoogle Scholar
  194. 194.
    Miller TA (1997) Control of circulation in insects. Gen Pharmacol 29(1):23–38PubMedGoogle Scholar
  195. 195.
    Young HM, Cane KN, Anderson CR (2011) Development of the autonomic nervous system: a comparative view. Auton Neurosci 165(1):10–27.  https://doi.org/10.1016/j.autneu.2010.03.002 Google Scholar
  196. 196.
    Snyder JM, Hagan CE, Bolon B, Keene CD (2018) 20—Nervous System. In: Treuting PM, Dintzis SM, Montine KS (eds) Comparative Anatomy and Histology, 2nd edn. Academic Press, San Diego, pp 403–444.  https://doi.org/10.1016/B978-0-12-802900-8.00020-8 Google Scholar
  197. 197.
    Furness JB (2015) Chapter 4—peripheral autonomic nervous system. In: Paxinos G (ed) The Rat Nervous System, 4th edn. Academic Press, London, pp 61–76Google Scholar
  198. 198.
    Becker RF, Grunt JA (1957) The cervical sympathetic ganglia. Anat Rec 127(1):1–14PubMedGoogle Scholar
  199. 199.
    Hassimoto M, Harada T (2002) Practical method for correcting QT intervals in experimental animals: QT correction formulas for beagle dogs and rhesus monkeys. Adv Anim Cardiol 35(2):119–123.  https://doi.org/10.11276/jsvc.35.119 Google Scholar
  200. 200.
    Manning-Bog AB, Langston JW (2007) Model fusion, the next phase in developing animal models for Parkinson’s disease. Neurotox Res 11(3–4):219–240PubMedGoogle Scholar
  201. 201.
    Muthukumaran K, Smith J, Jasra H, Sikorska M, Sandhu JK, Cohen J, Lopatin D, Pandey S (2014) Genetic susceptibility model of Parkinson’s disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10. J Parkinsons Dis 4(3):523–530.  https://doi.org/10.3233/jpd-140368 PubMedGoogle Scholar
  202. 202.
    Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24(8):2308–2317.  https://doi.org/10.1093/hmg/ddu748 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Preclinical Parkinson’s Research ProgramWisconsin National Primate Research Center, University of Wisconsin–MadisonMadisonUSA
  2. 2.Cellular and Molecular Pathology Graduate Program, University of Wisconsin–MadisonMadison, WIUSA
  3. 3.Department of Medical PhysicsUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations