Advertisement

Clinical Autonomic Research

, Volume 29, Issue 1, pp 17–29 | Cite as

Electrochemical skin conductance: a systematic review

  • Peter NovakEmail author
Review

Abstract

Purpose

Currently available techniques for the evaluation of small fiber neuropathy and related sudomotor function remain suboptimal. Electrochemical skin conductance (ESC) has recently been introduced as a simple noninvasive and fast method for the detection of sudomotor dysfunction. The purpose of this review is to synthesize and appraise research using ESC measurements for sudomotor evaluation in adults.

Methods

Electronic databases including MEDLINE and Google Scholar were searched (up to March 13, 2017). The search strategy included the following terms: "electrochemical skin conductance,” “Sudoscan,” and “EZSCAN.” Evidence was graded according to defined quality indicators including (1) level of evidence; (2) use of established tests as reference tests (e.g., quantitative sudomotor axon test [QSART], sympathetic skin responses [SSR], thermoregulatory sweat test [TST], and skin biopsies to assess sudomotor and epidermal small fibers); (3) use of consecutive/non-consecutive subjects; and (4) study design (prospective/retrospective).

Results

A total of 24 studies met the inclusion criteria. These were classified into preclinical, normative, comparative/diagnostic, or interventional. ESC measurement properties, diagnostic accuracy, and similarities to and differences from established tests were examined.

Conclusions

ESC measurements expand the arsenal of available tests for the evaluation of sudomotor dysfunction. The advantages and disadvantages of ESC versus established tests for evaluating sudomotor/small fiber function reviewed herein should be used as evidence to inform future guidelines on the assessment of sudomotor function.

Keywords

Electrochemical skin conductance ESC Sudoscan Small fiber neuropathy Dysautonomia Autonomic 

Notes

Acknowledgements

The author thanks Phillipe Brunswick, Impeto Medical, for clarification of principles for ESC measurements.

Compliance with ethical standards

Conflict of interest

The Sudoscan® device was donated to the author by Impeto Medical. Dr. Novak has received funding support from Impeto Medical.

References

  1. 1.
    Hovaguimian A, Gibbons CH (2011) Diagnosis and treatment of pain in small-fiber neuropathy. Curr Pain Headache Rep 15:193–200. doi: 10.1007/s11916-011-0181-7 CrossRefGoogle Scholar
  2. 2.
    England JD, Gronseth GS, Franklin G et al (2009) Practice Parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence-based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 72:177–184. doi: 10.1212/01.wnl.0000336345.70511.0f CrossRefGoogle Scholar
  3. 3.
    Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17(903–912):e44–e49. doi: 10.1111/j.1468-1331.2010.03023.x Google Scholar
  4. 4.
    Peters MJH, Bakkers M, Merkies ISJ et al (2013) Incidence and prevalence of small-fiber neuropathy: a survey in the Netherlands. Neurology 81:1356–1360. doi: 10.1212/WNL.0b013e3182a8236e CrossRefGoogle Scholar
  5. 5.
    Dimitropoulos G, Tahrani AA, Stevens MJ (2014) Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 5:17–39. doi: 10.4239/wjd.v5.i1.17 CrossRefGoogle Scholar
  6. 6.
    Devigili G, Tugnoli V, Penza P et al (2008) The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain J Neurol 131:1912–1925. doi: 10.1093/brain/awn093 CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Gibbons CH, Illigens BMW, Wang N, Freeman R (2009) Quantification of sweat gland innervation: a clinical-pathologic correlation. Neurology 72:1479–1486. doi: 10.1212/WNL.0b013e3181a2e8b8 CrossRefGoogle Scholar
  9. 9.
    Ayoub H, Calvet JH, Lair V et al (2012) Electrochemical basis for EZSCAN/SUDOSCAN: a quick, simple, and non-invasive method to evaluate sudomotor dysfunctions. In: Chun JH (ed) Developments in electrochemistry. ISBN 978-953-51-0851-1. https://www.intechopen.com/books/developments-in-electrochemistry/electrochemical-basis-for-ezscansudoscan-a-quick-simple-and-non-invasive-method-to-evaluate-sudomot
  10. 10.
    Ayoub H, Lair V, Griveau S et al (2012) Electrochemical characterization of stainless steel as a new electrode material in a medical device for the diagnosis of sudomotor dysfunction. Electroanalysis 24:1324–1333. doi: 10.1002/elan.201200058 CrossRefGoogle Scholar
  11. 11.
    Vinik AI, Nevoret M-L, Casellini C (2015) The new age of sudomotor function testing: a sensitive and specific biomarker for diagnosis, estimation of severity, monitoring progression, and regression in response to intervention. Front Endocrinol 6:94. doi: 10.3389/fendo.2015.00094 CrossRefGoogle Scholar
  12. 12.
    Hubert D, Brunswick P, Calvet J-H et al (2011) Abnormal electrochemical skin conductance in cystic fibrosis. J Cyst Fibros Off J Eur Cyst Fibros Soc 10:15–20. doi: 10.1016/j.jcf.2010.09.002 CrossRefGoogle Scholar
  13. 13.
    Shibasaki M, Crandall CG (2010) Mechanisms and controllers of eccrine sweating in humans. Front Biosci 2:685–696Google Scholar
  14. 14.
    García Villar C (2011) Evidence-based radiology for diagnostic imaging: what it is and how to practice it. Radiologia 53:326–334. doi: 10.1016/j.rx.2011.02.009 CrossRefGoogle Scholar
  15. 15.
    Shamseer L, Moher D, Clarke M et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349:g7647CrossRefGoogle Scholar
  16. 16.
    Leboulanger B, Guy RH, Delgado-Charro MB (2004) Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas 25:R35–R50CrossRefGoogle Scholar
  17. 17.
    Chizmadzhev YA, Indenbom AV, Kuzmin PI et al (1998) Electrical properties of skin at moderate voltages: contribution of appendageal macropores. Biophys J 74:843–856. doi: 10.1016/S0006-3495(98)74008-1 CrossRefGoogle Scholar
  18. 18.
    Brunswick P, Mayaudon H, Albin V et al (2007) Use of Ni electrodes chronoamperometry for improved diagnostics of diabetes and cardiac diseases. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2007:4544–4547. doi: 10.1109/IEMBS.2007.4353350 Google Scholar
  19. 19.
    Vinik AI, Smith AG, Singleton JR et al (2016) Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function. Diabetes Technol Ther 18:391–398. doi: 10.1089/dia.2015.0396 CrossRefGoogle Scholar
  20. 20.
    Hubert D, Brunswick P, Calvet J-H et al (2011) Abnormal electrochemical skin conductance in cystic fibrosis. J Cyst Fibros Off J Eur Cyst Fibros Soc 10:15–20. doi: 10.1016/j.jcf.2010.09.002 CrossRefGoogle Scholar
  21. 21.
    Zhu L, Zhao X, Zeng P et al (2016) Study on autonomic dysfunction and metabolic syndrome in Chinese patients. J Diabetes Investig 7:901–907. doi: 10.1111/jdi.12524 CrossRefGoogle Scholar
  22. 22.
    Freedman BI, Bowden DW, Smith SC et al (2014) Relationships between electrochemical skin conductance and kidney disease in type 2 diabetes. J Diabetes Complic 28:56–60. doi: 10.1016/j.jdiacomp.2013.09.006 CrossRefGoogle Scholar
  23. 23.
    Freedman BI, Smith SC, Bagwell BM et al (2015) Electrochemical skin conductance in diabetic kidney disease. Am J Nephrol 41:438–447. doi: 10.1159/000437342 CrossRefGoogle Scholar
  24. 24.
    Calvet JH, Dupin J, Winiecki H, Schwarz PEH (2013) Assessment of small fiber neuropathy through a quick, simple and non invasive method in a German diabetes outpatient clinic. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc 121:80–83. doi: 10.1055/s-0032-1323777 Google Scholar
  25. 25.
    Luk AOY, Fu W-C, Li X et al (2015) The clinical utility of SUDOSCAN in chronic kidney disease in Chinese patients with type 2 diabetes. PLoS One 10:e0134981. doi: 10.1371/journal.pone.0134981 CrossRefGoogle Scholar
  26. 26.
    Chahal S, Vohra K, Syngle A (2017) Association of sudomotor function with peripheral artery disease in type 2 diabetes. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 38:151–156. doi: 10.1007/s10072-016-2742-3 Google Scholar
  27. 27.
    Mayaudon H, Miloche P-O, Bauduceau B (2010) A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab 36:450–454. doi: 10.1016/j.diabet.2010.05.004 CrossRefGoogle Scholar
  28. 28.
    Ramachandran A, Moses A, Shetty S et al (2010) A new non-invasive technology to screen for dysglycaemia including diabetes. Diabetes Res Clin Pract 88:302–306. doi: 10.1016/j.diabres.2010.01.023 CrossRefGoogle Scholar
  29. 29.
    Chen X, Chen L, Ding R et al (2015) A preliminary investigation of EZSCAN™ screening for impaired glucose tolerance and diabetes in a patient population. Exp Ther Med 9:1688–1694. doi: 10.3892/etm.2015.2358 CrossRefGoogle Scholar
  30. 30.
    Casellini CM, Parson HK, Richardson MS et al (2013) Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther 15:948–953. doi: 10.1089/dia.2013.0129 CrossRefGoogle Scholar
  31. 31.
    Mao F, Liu S, Qiao X et al (2016) Sudoscan is an effective screening method for asymptomatic diabetic neuropathy in Chinese type 2 diabetes mellitus patients. J Diabetes Investig. doi: 10.1111/jdi.12575 Google Scholar
  32. 32.
    Selvarajah D, Cash T, Davies J et al (2015) SUDOSCAN: a simple, rapid, and objective method with potential for screening for diabetic peripheral neuropathy. PLoS One 10:e0138224. doi: 10.1371/journal.pone.0138224 CrossRefGoogle Scholar
  33. 33.
    England JD, Gronseth GS, Franklin G et al (2005) Distal symmetric polyneuropathy: a definition for clinical research: report of the American Academy of Neurology, the American Association of Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology 64:199–207. doi: 10.1212/01.WNL.0000149522.32823.EA CrossRefGoogle Scholar
  34. 34.
    Sheshah E, Madanat A, Al-Greesheh F et al (2015) Electrochemical skin conductance to detect sudomotor dysfunction, peripheral neuropathy and the risk of foot ulceration among Saudi patients with diabetes mellitus. J Diabetes Metab Disord 15:29. doi: 10.1186/s40200-016-0252-8 CrossRefGoogle Scholar
  35. 35.
    Yajnik CS, Kantikar VV, Pande AJ, Deslypere JP (2012) Quick and simple evaluation of sudomotor function for screening of diabetic neuropathy. ISRN Endocrinol 2012:103714. doi: 10.5402/2012/103714 CrossRefGoogle Scholar
  36. 36.
    Yajnik CS, Kantikar V, Pande A et al (2013) Screening of cardiovascular autonomic neuropathy in patients with diabetes using non-invasive quick and simple assessment of sudomotor function. Diabetes Metab 39:126–131. doi: 10.1016/j.diabet.2012.09.004 CrossRefGoogle Scholar
  37. 37.
    Ang L, Jaiswal M, Callaghan B et al (2017) Sudomotor dysfunction as a measure of small fiber neuropathy in type 1 diabetes. Auton Neurosci Basic Clin. doi: 10.1016/j.autneu.2017.03.001 Google Scholar
  38. 38.
    Smith AG, Lessard M, Reyna S et al (2014) The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complic 28:511–516. doi: 10.1016/j.jdiacomp.2014.02.013 CrossRefGoogle Scholar
  39. 39.
    Novak P (2016) Electrochemical skin conductance correlates with skin nerve fiber density. Front Aging Neurosci 8:199. doi: 10.3389/fnagi.2016.00199 Google Scholar
  40. 40.
    Castro J, Miranda B, Castro I et al (2016) The diagnostic accuracy of Sudoscan in transthyretin familial amyloid polyneuropathy. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 127:2222–2227. doi: 10.1016/j.clinph.2016.02.013 CrossRefGoogle Scholar
  41. 41.
    Denier C, Ducot B, Husson H et al (2007) A brief compound test for assessment of autonomic and sensory-motor dysfunction in familial amyloid polyneuropathy. J Neurol 254:1684–1688. doi: 10.1007/s00415-007-0617-5 CrossRefGoogle Scholar
  42. 42.
    Syngle A, Verma I, Krishan P et al (2015) Disease-modifying anti-rheumatic drugs improve autonomic neuropathy in arthritis: DIANA study. Clin Rheumatol 34:1233–1241. doi: 10.1007/s10067-014-2716-x CrossRefGoogle Scholar
  43. 43.
    Casellini CM, Parson HK, Hodges K et al (2016) Bariatric surgery restores cardiac and sudomotor autonomic C-Fiber dysfunction towards normal in obese subjects with type 2 diabetes. PLoS One 11:e0154211. doi: 10.1371/journal.pone.0154211 CrossRefGoogle Scholar
  44. 44.
    Smith AG, Lessard M, Reyna S et al (2014) The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. J Diabetes Complic 28:511–516. doi: 10.1016/j.jdiacomp.2014.02.013 CrossRefGoogle Scholar
  45. 45.
    Casellini CM, Parson HK, Richardson MS et al (2013) Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technol Ther 15:948–953. doi: 10.1089/dia.2013.0129 CrossRefGoogle Scholar
  46. 46.
    Sato K, Ohtsuyama M, Samman G (1991) Eccrine sweat gland disorders. J Am Acad Dermatol 24:1010–1014CrossRefGoogle Scholar
  47. 47.
    Brunswick P, Bocquet N (2014) United States Patent: 8918170—Electrophysiological analysis systemGoogle Scholar
  48. 48.
    Vitale GI, Quatrale RP, Giles PJ, Birnbaum JE (1986) Electrical field stimulation of isolated primate sweat glands. Br J Dermatol 115:39–47CrossRefGoogle Scholar
  49. 49.
    Sommer P, Kluschina O, Schley M et al (2011) Electrically induced quantitative sudomotor axon reflex test in human volunteers. Auton Neurosci Basic Clin 159:111–116. doi: 10.1016/j.autneu.2010.09.004 CrossRefGoogle Scholar
  50. 50.
    Brinton M, Chung JL, Kossler A et al (2016) Electronic enhancement of tear secretion. J Neural Eng 13:016006. doi: 10.1088/1741-2560/13/1/016006 CrossRefGoogle Scholar
  51. 51.
    Zonana J (1993) Hypohidrotic (anhidrotic) ectodermal dysplasia: molecular genetic research and its clinical applications. Semin Dermatol 12:241–246Google Scholar
  52. 52.
    Norcliffe-Kaufmann L, Katz SD, Axelrod F, Kaufmann H (2015) Norepinephrine deficiency with normal blood pressure control in congenital insensitivity to pain with anhidrosis. Ann Neurol 77:743–752. doi: 10.1002/ana.24377 CrossRefGoogle Scholar
  53. 53.
    Low PA, Caskey PE, Tuck RR et al (1983) Quantitative sudomotor axon reflex test in normal and neuropathic subjects. Ann Neurol 14:573–580. doi: 10.1002/ana.410140513 CrossRefGoogle Scholar
  54. 54.
    Wang N, Gibbons CH, Freeman R (2011) Novel immunohistochemical techniques using discrete signal amplification systems for human cutaneous peripheral nerve fiber imaging. J Histochem Cytochem 59:382–390. doi: 10.1369/0022155410396931 CrossRefGoogle Scholar
  55. 55.
    Henderson LA, Stathis A, James C et al (2012) Real-time imaging of cortical areas involved in the generation of increases in skin sympathetic nerve activity when viewing emotionally charged images. NeuroImage 62:30–40. doi: 10.1016/j.neuroimage.2012.04.049 CrossRefGoogle Scholar
  56. 56.
    Asahina M, Poudel A, Hirano S (2015) Sweating on the palm and sole: physiological and clinical relevance. Clin Auton Res Off J Clin Auton Res Soc 25:153–159. doi: 10.1007/s10286-015-0282-1 CrossRefGoogle Scholar
  57. 57.
    Claus D, Schondorf R (1999) Sympathetic skin response. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:277–282Google Scholar
  58. 58.
    Vetrugno R, Liguori R, Cortelli P, Montagna P (2003) Sympathetic skin response: basic mechanisms and clinical applications. Clin Auton Res Off J Clin Auton Res Soc 13:256–270. doi: 10.1007/s10286-003-0107-5 CrossRefGoogle Scholar
  59. 59.
    Shimada H, Kihara M, Kosaka S et al (2001) Comparison of SSR and QSART in early diabetic neuropathy–the value of length-dependent pattern in QSART. Auton Neurosci Basic Clin 92:72–75. doi: 10.1016/S1566-0702(01)00287-9 CrossRefGoogle Scholar
  60. 60.
    Illigens BMW, Gibbons CH (2009) Sweat testing to evaluate autonomic function. Clin Auton Res Off J Clin Auton Res Soc 19:79–87. doi: 10.1007/s10286-008-0506-8 CrossRefGoogle Scholar
  61. 61.
    Lefaucheur J-P, Wahab A, Planté-Bordeneuve V et al (2015) Diagnosis of small fiber neuropathy: a comparative study of five neurophysiological tests. Neurophysiol Clin Clin Neurophysiol 45:445–455. doi: 10.1016/j.neucli.2015.09.012 CrossRefGoogle Scholar
  62. 62.
    Syngle A, Verma I, Krishan P et al (2015) Disease-modifying anti-rheumatic drugs improve autonomic neuropathy in arthritis: DIANA study. Clin Rheumatol 34:1233–1241. doi: 10.1007/s10067-014-2716-x CrossRefGoogle Scholar
  63. 63.
    Obici L, Kuks JB, Buades J et al (2016) Recommendations for presymptomatic genetic testing and management of individuals at risk for hereditary transthyretin amyloidosis. Curr Opin Neurol 29(Suppl 1):S27–S35. doi: 10.1097/WCO.0000000000000290 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Autonomic Laboratory, Department of NeurologyBrigham and Women’s Faulkner Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations