Could Blockchain Technology Empower Patients, Improve Education, and Boost Research in Radiology Departments? An Open Question for Future Applications

  • Francesco Verde
  • Arnaldo StanzioneEmail author
  • Valeria Romeo
  • Renato Cuocolo
  • Simone Maurea
  • Arturo Brunetti


Blockchain can be considered as a digital database of cryptographically validated transactions stored as blocks of data. Copies of the database are distributed on a peer-to-peer network adhering to a consensus protocol for authentication of new blocks into the chain. While confined to financial applications in the past, this technology is quickly becoming a hot topic in healthcare and scientific research. Potential applications in radiology range from upgraded monitoring of training milestones achievement for residents to improved control of clinical imaging data and easier creation of secure shared databases.


Blockchain Education Big data 



  1. 1.
    Satoshi N (2008) Bitcoin: A peer to peer electronic cash system. Available at: Accessed February 20, 2019,
  2. 2.
    Yli-Huumo J, Ko D, Choi S, Park S, Smolander K: Where is current research on Blockchain technology?-a systematic review. PLoS One 11(10):e0163477, 2016. CrossRefGoogle Scholar
  3. 3.
    Saberi S, Kouhizadeh M, Sarkis J, Shen L: Blockchain technology and its relationships to sustainable supply chain management. Int J Prod Res 57:1–19, 2018. Google Scholar
  4. 4.
    Jo BW, Khan RMA, Lee YS: Hybrid Blockchain and internet-of-things network for underground structure health monitoring. Sensors (Basel) 18(12):4268, 2018. CrossRefGoogle Scholar
  5. 5.
    Till BM, Peters AW, Afshar S, Meara J: From blockchain technology to global health equity: Can cryptocurrencies finance universal health coverage? BMJ Glob Health 2(4):e000570, 2017. CrossRefGoogle Scholar
  6. 6.
    Kuo TT, Kim HE, Ohno-Machado L: Blockchain distributed ledger technologies for biomedical and health care applications. J Am Med Inform Assoc 24(6):1211–1220, 2017. CrossRefGoogle Scholar
  7. 7.
    Kaur H, Alam MA, Jameel R, Mourya AK, Chang V: A proposed solution and future direction for Blockchain-based heterogeneous Medicare data in cloud environment. J Med Syst 42(8):156, 2018. CrossRefGoogle Scholar
  8. 8.
    Zhang A, Lin X: Towards secure and privacy-preserving data sharing in e-health systems via consortium Blockchain. J Med Syst 42(8):140, 2018. CrossRefGoogle Scholar
  9. 9.
    Zhang P, White J, Schmidt DC, Lenz G, Rosenbloom ST: FHIRChain: Applying Blockchain to securely and Scalably share clinical data. Comput Struct Biotechnol J 16:267–278, 2018. CrossRefGoogle Scholar
  10. 10.
    Kleinaki AS, Mytis-Gkometh P, Drosatos G, Efraimidis PS, Kaldoudi E: A Blockchain-based notarization service for biomedical knowledge retrieval. Comput Struct Biotechnol J 16:288–297, 2018. CrossRefGoogle Scholar
  11. 11.
    Fan K, Wang S, Ren Y, Li H, Yang Y: MedBlock: Efficient and secure medical data sharing via Blockchain. J Med Syst 42(8):136, 2018. CrossRefGoogle Scholar
  12. 12.
    Chen Y, Ding S, Xu Z, Zheng H, Yang S: Blockchain-based medical records secure storage and medical service framework. J Med Syst 43(1):5, 2018. CrossRefGoogle Scholar
  13. 13.
    Pirtle C, Ehrenfeld J: Blockchain for healthcare: The next generation of medical records? J Med Syst 42(9):172, 2018. CrossRefGoogle Scholar
  14. 14.
    Li H, Zhu L, Shen M, Gao F, Tao X, Liu S: Blockchain-based data preservation system for medical data. J Med Syst 42(8):141, 2018. CrossRefGoogle Scholar
  15. 15.
    Angraal S, Krumholz HM, Schulz WL: Blockchain technology: Applications in health care. Circ Cardiovasc Qual Outcomes 10(9), 2017.
  16. 16.
    Yue X, Wang H, Jin D, Li M, Jiang W: Healthcare data gateways: Found healthcare intelligence on Blockchain with novel privacy risk control. J Med Syst 40(10):218, 2016. CrossRefGoogle Scholar
  17. 17.
    Ozercan HI, Ileri AM, Ayday E, Alkan C: Realizing the potential of blockchain technologies in genomics. Genome Res 28(9):1255–1263, 2018. CrossRefGoogle Scholar
  18. 18.
    Sylim P, Liu F, Marcelo A, Fontelo P: Blockchain Technology for Detecting Falsified and Substandard Drugs in distribution: Pharmaceutical supply chain intervention. JMIR Res Protoc 7(9):e10163, 2018. CrossRefGoogle Scholar
  19. 19.
    Radanović I, Likić R: Opportunities for use of Blockchain Technology in Medicine. Appl Health Econ Health Policy 16:583–590, 2018. CrossRefGoogle Scholar
  20. 20.
    Zhou L, Wang L, Sun Y: MIStore: A Blockchain-based medical insurance storage system. J Med Syst 42(8):149, 2018. CrossRefGoogle Scholar
  21. 21.
    Maslove DM, Klein J, Brohman K, Martin P: Using Blockchain technology to manage clinical trials data: A proof-of-concept study. JMIR Med Inform 6(4):e11949, 2018. CrossRefGoogle Scholar
  22. 22.
    Dubovitskaya A, Xu Z, Ryu S, Schumacher M, Wang F: Secure and trustable electronic medical records sharing using Blockchain. AMIA Annu Symp Proc 2017:650–659, 2018Google Scholar
  23. 23.
    Cichosz SL, Stausholm MN, Kronborg T, Vestergaard P, Hejlesen O: How to use Blockchain for diabetes health care data and access management: An operational concept. J Diabetes Sci Technol 13:248–253, 2018. CrossRefGoogle Scholar
  24. 24.
    Tung JK, Nambudiri VE: Beyond bitcoin: Potential applications of blockchain technology in dermatology. Br J Dermatol 179(4):1013–1014, 2018. CrossRefGoogle Scholar
  25. 25.
    Ichikawa D, Kashiyama M, Ueno T: Tamper-resistant Mobile health using Blockchain technology. JMIR Mhealth Uhealth 5(7):e111, 2017. CrossRefGoogle Scholar
  26. 26.
    Dwivedi AD, Srivastava G, Dhar S, Singh R: A decentralized privacy-preserving healthcare Blockchain for IoT. Sensors (Basel) 19(2):326, 2019. CrossRefGoogle Scholar
  27. 27.
    Patel V: A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Informatics J, 2018
  28. 28.
    Roman-Belmonte JM: De la Corte-Rodriguez H, Rodriguez-Merchan EC. How blockchain technology can change medicine. Postgrad Med 130(4):420–427, 2018. CrossRefGoogle Scholar
  29. 29.
    Funk E, Riddell J, Ankel F, Cabrera D: Blockchain technology: A data framework to improve validity, trust, and accountability of information exchange in health professions education. Acad Med 93(12):1791–1794, 2018. CrossRefGoogle Scholar
  30. 30.
    Romeo V, Maurea S, Cuocolo R, Petretta M, Mainenti PP, Verde F, Coppola M, Dell'Aversana S, Brunetti A: Characterization of adrenal lesions on unenhanced MRI using texture analysis: A machine-learning approach. J Magn Reson Imaging 48(1):198–204, 2018. CrossRefGoogle Scholar
  31. 31.
    Stanzione A, Cuocolo R, Cocozza S, Romeo V, Persico F, Fusco F, Longo N, Brunetti A, Imbriaco M: Detection of Extraprostatic extension of Cancer on Biparametric MRI combining texture analysis and machine learning: Preliminary results. Acad Radiol, 2019.
  32. 32.
    Seah JCY, Tang JSN, Kitchen A, Gaillard F, Dixon AF: Chest radiographs in congestive heart failure: Visualizing neural network learning. Radiology 290(2):514–522, 2019. CrossRefGoogle Scholar
  33. 33.
    Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C, Behr SC, Flavell RR, Huang SY, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, Hernandez Pampaloni M, Hadley D, Franc BL: A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology 290(2):456–464, 2019. CrossRefGoogle Scholar
  34. 34.
    Mamoshina P, Ojomoko L, Yanovich Y, Al OA e: Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 9(5):5665–5690, 2017. Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2019

Authors and Affiliations

  1. 1.Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations