Advertisement

Could Blockchain Technology Empower Patients, Improve Education, and Boost Research in Radiology Departments? An Open Question for Future Applications

  • Francesco Verde
  • Arnaldo StanzioneEmail author
  • Valeria Romeo
  • Renato Cuocolo
  • Simone Maurea
  • Arturo Brunetti
Article

Abstract

Blockchain can be considered as a digital database of cryptographically validated transactions stored as blocks of data. Copies of the database are distributed on a peer-to-peer network adhering to a consensus protocol for authentication of new blocks into the chain. While confined to financial applications in the past, this technology is quickly becoming a hot topic in healthcare and scientific research. Potential applications in radiology range from upgraded monitoring of training milestones achievement for residents to improved control of clinical imaging data and easier creation of secure shared databases.

Keywords

Blockchain Education Big data 

Notes

References

  1. 1.
    Satoshi N (2008) Bitcoin: A peer to peer electronic cash system. Available at: http://bitcoin.org/bitcoin.pdf. Accessed February 20, 2019,
  2. 2.
    Yli-Huumo J, Ko D, Choi S, Park S, Smolander K: Where is current research on Blockchain technology?-a systematic review. PLoS One 11(10):e0163477, 2016.  https://doi.org/10.1371/journal.pone.0163477 CrossRefGoogle Scholar
  3. 3.
    Saberi S, Kouhizadeh M, Sarkis J, Shen L: Blockchain technology and its relationships to sustainable supply chain management. Int J Prod Res 57:1–19, 2018.  https://doi.org/10.1080/00207543.2018.1533261 Google Scholar
  4. 4.
    Jo BW, Khan RMA, Lee YS: Hybrid Blockchain and internet-of-things network for underground structure health monitoring. Sensors (Basel) 18(12):4268, 2018.  https://doi.org/10.3390/s18124268 CrossRefGoogle Scholar
  5. 5.
    Till BM, Peters AW, Afshar S, Meara J: From blockchain technology to global health equity: Can cryptocurrencies finance universal health coverage? BMJ Glob Health 2(4):e000570, 2017.  https://doi.org/10.1136/bmjgh-2017-000570 CrossRefGoogle Scholar
  6. 6.
    Kuo TT, Kim HE, Ohno-Machado L: Blockchain distributed ledger technologies for biomedical and health care applications. J Am Med Inform Assoc 24(6):1211–1220, 2017.  https://doi.org/10.1093/jamia/ocx068 CrossRefGoogle Scholar
  7. 7.
    Kaur H, Alam MA, Jameel R, Mourya AK, Chang V: A proposed solution and future direction for Blockchain-based heterogeneous Medicare data in cloud environment. J Med Syst 42(8):156, 2018.  https://doi.org/10.1007/s10916-018-1007-5 CrossRefGoogle Scholar
  8. 8.
    Zhang A, Lin X: Towards secure and privacy-preserving data sharing in e-health systems via consortium Blockchain. J Med Syst 42(8):140, 2018.  https://doi.org/10.1007/s10916-018-0995-5 CrossRefGoogle Scholar
  9. 9.
    Zhang P, White J, Schmidt DC, Lenz G, Rosenbloom ST: FHIRChain: Applying Blockchain to securely and Scalably share clinical data. Comput Struct Biotechnol J 16:267–278, 2018.  https://doi.org/10.1016/j.csbj.2018.07.004 CrossRefGoogle Scholar
  10. 10.
    Kleinaki AS, Mytis-Gkometh P, Drosatos G, Efraimidis PS, Kaldoudi E: A Blockchain-based notarization service for biomedical knowledge retrieval. Comput Struct Biotechnol J 16:288–297, 2018.  https://doi.org/10.1016/j.csbj.2018.08.002 CrossRefGoogle Scholar
  11. 11.
    Fan K, Wang S, Ren Y, Li H, Yang Y: MedBlock: Efficient and secure medical data sharing via Blockchain. J Med Syst 42(8):136, 2018.  https://doi.org/10.1007/s10916-018-0993-7 CrossRefGoogle Scholar
  12. 12.
    Chen Y, Ding S, Xu Z, Zheng H, Yang S: Blockchain-based medical records secure storage and medical service framework. J Med Syst 43(1):5, 2018.  https://doi.org/10.1007/s10916-018-1121-4 CrossRefGoogle Scholar
  13. 13.
    Pirtle C, Ehrenfeld J: Blockchain for healthcare: The next generation of medical records? J Med Syst 42(9):172, 2018.  https://doi.org/10.1007/s10916-018-1025-3 CrossRefGoogle Scholar
  14. 14.
    Li H, Zhu L, Shen M, Gao F, Tao X, Liu S: Blockchain-based data preservation system for medical data. J Med Syst 42(8):141, 2018.  https://doi.org/10.1007/s10916-018-0997-3 CrossRefGoogle Scholar
  15. 15.
    Angraal S, Krumholz HM, Schulz WL: Blockchain technology: Applications in health care. Circ Cardiovasc Qual Outcomes 10(9), 2017.  https://doi.org/10.1161/CIRCOUTCOMES.117.003800
  16. 16.
    Yue X, Wang H, Jin D, Li M, Jiang W: Healthcare data gateways: Found healthcare intelligence on Blockchain with novel privacy risk control. J Med Syst 40(10):218, 2016.  https://doi.org/10.1007/s10916-016-0574-6 CrossRefGoogle Scholar
  17. 17.
    Ozercan HI, Ileri AM, Ayday E, Alkan C: Realizing the potential of blockchain technologies in genomics. Genome Res 28(9):1255–1263, 2018.  https://doi.org/10.1101/gr.207464.116 CrossRefGoogle Scholar
  18. 18.
    Sylim P, Liu F, Marcelo A, Fontelo P: Blockchain Technology for Detecting Falsified and Substandard Drugs in distribution: Pharmaceutical supply chain intervention. JMIR Res Protoc 7(9):e10163, 2018.  https://doi.org/10.2196/10163 CrossRefGoogle Scholar
  19. 19.
    Radanović I, Likić R: Opportunities for use of Blockchain Technology in Medicine. Appl Health Econ Health Policy 16:583–590, 2018.  https://doi.org/10.1007/s40258-018-0412-8 CrossRefGoogle Scholar
  20. 20.
    Zhou L, Wang L, Sun Y: MIStore: A Blockchain-based medical insurance storage system. J Med Syst 42(8):149, 2018.  https://doi.org/10.1007/s10916-018-0996-4 CrossRefGoogle Scholar
  21. 21.
    Maslove DM, Klein J, Brohman K, Martin P: Using Blockchain technology to manage clinical trials data: A proof-of-concept study. JMIR Med Inform 6(4):e11949, 2018.  https://doi.org/10.2196/11949 CrossRefGoogle Scholar
  22. 22.
    Dubovitskaya A, Xu Z, Ryu S, Schumacher M, Wang F: Secure and trustable electronic medical records sharing using Blockchain. AMIA Annu Symp Proc 2017:650–659, 2018Google Scholar
  23. 23.
    Cichosz SL, Stausholm MN, Kronborg T, Vestergaard P, Hejlesen O: How to use Blockchain for diabetes health care data and access management: An operational concept. J Diabetes Sci Technol 13:248–253, 2018.  https://doi.org/10.1177/1932296818790281 CrossRefGoogle Scholar
  24. 24.
    Tung JK, Nambudiri VE: Beyond bitcoin: Potential applications of blockchain technology in dermatology. Br J Dermatol 179(4):1013–1014, 2018.  https://doi.org/10.1111/bjd.16922 CrossRefGoogle Scholar
  25. 25.
    Ichikawa D, Kashiyama M, Ueno T: Tamper-resistant Mobile health using Blockchain technology. JMIR Mhealth Uhealth 5(7):e111, 2017.  https://doi.org/10.2196/mhealth.7938 CrossRefGoogle Scholar
  26. 26.
    Dwivedi AD, Srivastava G, Dhar S, Singh R: A decentralized privacy-preserving healthcare Blockchain for IoT. Sensors (Basel) 19(2):326, 2019.  https://doi.org/10.3390/s19020326 CrossRefGoogle Scholar
  27. 27.
    Patel V: A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Informatics J, 2018  https://doi.org/10.1177/1460458218769699.
  28. 28.
    Roman-Belmonte JM: De la Corte-Rodriguez H, Rodriguez-Merchan EC. How blockchain technology can change medicine. Postgrad Med 130(4):420–427, 2018.  https://doi.org/10.1080/00325481.2018.1472996 CrossRefGoogle Scholar
  29. 29.
    Funk E, Riddell J, Ankel F, Cabrera D: Blockchain technology: A data framework to improve validity, trust, and accountability of information exchange in health professions education. Acad Med 93(12):1791–1794, 2018.  https://doi.org/10.1097/ACM.0000000000002326 CrossRefGoogle Scholar
  30. 30.
    Romeo V, Maurea S, Cuocolo R, Petretta M, Mainenti PP, Verde F, Coppola M, Dell'Aversana S, Brunetti A: Characterization of adrenal lesions on unenhanced MRI using texture analysis: A machine-learning approach. J Magn Reson Imaging 48(1):198–204, 2018.  https://doi.org/10.1002/jmri.25954 CrossRefGoogle Scholar
  31. 31.
    Stanzione A, Cuocolo R, Cocozza S, Romeo V, Persico F, Fusco F, Longo N, Brunetti A, Imbriaco M: Detection of Extraprostatic extension of Cancer on Biparametric MRI combining texture analysis and machine learning: Preliminary results. Acad Radiol, 2019.  https://doi.org/10.1016/j.acra.2018.12.025
  32. 32.
    Seah JCY, Tang JSN, Kitchen A, Gaillard F, Dixon AF: Chest radiographs in congestive heart failure: Visualizing neural network learning. Radiology 290(2):514–522, 2019.  https://doi.org/10.1148/radiol.2018180887 CrossRefGoogle Scholar
  33. 33.
    Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, Lituiev D, Copeland TP, Aboian MS, Mari Aparici C, Behr SC, Flavell RR, Huang SY, Zalocusky KA, Nardo L, Seo Y, Hawkins RA, Hernandez Pampaloni M, Hadley D, Franc BL: A deep learning model to predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of the brain. Radiology 290(2):456–464, 2019.  https://doi.org/10.1148/radiol.2018180958 CrossRefGoogle Scholar
  34. 34.
    Mamoshina P, Ojomoko L, Yanovich Y, Al OA e: Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget 9(5):5665–5690, 2017.  https://doi.org/10.18632/oncotarget.22345 Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2019

Authors and Affiliations

  1. 1.Department of Advanced Biomedical SciencesUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations