Advertisement

Journal of Digital Imaging

, Volume 32, Issue 3, pp 420–432 | Cite as

A Platform Integrating Acquisition, Reconstruction, Visualization, and Manipulator Control Modules for MRI-Guided Interventions

  • Jose D. Velazco Garcia
  • Nikhil V. Navkar
  • Dawei Gui
  • Cristina M. Morales
  • Eftychios G. Christoforou
  • Alpay Ozcan
  • Julien Abinahed
  • Abdulla Al-Ansari
  • Andrew Webb
  • Ioannis Seimenis
  • Nikolaos V. TsekosEmail author
Article
  • 117 Downloads

Abstract

This work presents a platform that integrates a customized MRI data acquisition scheme with reconstruction and three-dimensional (3D) visualization modules along with a module for controlling an MRI-compatible robotic device to facilitate the performance of robot-assisted, MRI-guided interventional procedures. Using dynamically-acquired MRI data, the computational framework of the platform generates and updates a 3D model representing the area of the procedure (AoP). To image structures of interest in the AoP that do not reside inside the same or parallel slices, the MRI acquisition scheme was modified to collect a multi-slice set of intraoblique to each other slices; which are termed composing slices. Moreover, this approach interleaves the collection of the composing slices so the same k-space segments of all slices are collected during similar time instances. This time matching of the k-space segments results in spatial matching of the imaged objects in the individual composing slices. The composing slices were used to generate and update the 3D model of the AoP. The MRI acquisition scheme was evaluated with computer simulations and experimental studies. Computer simulations demonstrated that k-space segmentation and time-matched interleaved acquisition of these segments provide spatial matching of the structures imaged with composing slices. Experimental studies used the platform to image the maneuvering of an MRI-compatible manipulator that carried tubing filled with MRI contrast agent. In vivo experimental studies to image the abdomen and contrast enhanced heart on free-breathing subjects without cardiac triggering demonstrated spatial matching of imaged anatomies in the composing planes. The described interventional MRI framework could assist in performing real-time MRI-guided interventions.

Keywords

MRI-guided interventions Dynamic three-dimensional reconstruction and visualization Oblique multi-slice imaging Control of MRI-compatible robot 

Notes

Acknowledgements

This work was supported in part by the National Science Foundation grant CNS-1646566, a Greek Diaspora Fellowship granted by the Stavros Niarchos Foundation and administered by the Institute of International Education, as well as the Qatar National Research Fund award NPRP9-300-2-132 by Qatar Foundation.

Disclaimer

All opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of our sponsors.

References

  1. 1.
    Martin AJ, Larson PS, Ostrem JL, Keith Sootsman W, Talke P, Weber OM, Levesque N, Myers J, Starr PA: Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med 54(5):1107–1114, 2005Google Scholar
  2. 2.
    Jolesz FA: Future perspectives for intraoperative MRI. Neurosurg Clin N Am 16(1):201–213, 2005Google Scholar
  3. 3.
    Scheer JK, Hamelin T, Chang L, Lemkuil B, Carter BS, Chen CC: Real-time magnetic resonance imaging-guided biopsy using SmartFrame® Stereotaxis in the setting of a conventional diagnostic magnetic resonance imaging suite. Oper Neurosurg (Hagerstown) 13(3):329–337, 2017Google Scholar
  4. 4.
    Giganti F, Moore CM: A critical comparison of techniques for MRI-targeted biopsy of the prostate. Transl Androl Urol 6(3):432–443, 2017Google Scholar
  5. 5.
    Borot de Battisti M, Denis de Senneville B, Hautvast G, Binnekamp D, Lagendijk JJW, Maenhout M, Moerland MA: A novel adaptive needle insertion sequencing for robotic, single needle MR-guided high-dose-rate prostate brachytherapy. Phys Med Biol 62(10):4031–4045, 2017Google Scholar
  6. 6.
    Liberman L, Bracero N, Morris E, Thornton C, Dershaw DD: MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. AJR Am J Roentgenol 185(1):183–193, 2005Google Scholar
  7. 7.
    McVeigh ER, Guttman MA, Lederman RJ, Li M, Kocaturk O, Hunt T, Kozlov S, Horvath KA: Real-time interactive MRI-guided cardiac surgery: aortic valve replacement using a direct apical approach. Magn Reson Med 56(5):958–964, 2006Google Scholar
  8. 8.
    Saikus CE, Lederman RJ: Interventional cardiovascular magnetic resonance imaging: a new opportunity for image-guided interventions. JACC Cardiovasc Imaging 2(11):1321–1331, 2009Google Scholar
  9. 9.
    Steiner P, Erhart P, Heske N, Dumoulin CL, von Schulthess GK, Debatin JF: Active biplanar MR tracking for biopsies in humans. AJR Am J Roentgenol 169(3):735–738, 1997Google Scholar
  10. 10.
    Zhang Q, Wendt M, Aschoff AJ, Zheng L, Lewin JS, Duerk JL: Active MR guidance of interventional devices with target-navigation. Magn Reson Med 44(1):56–65, 2000Google Scholar
  11. 11.
    Guttman MA, Lederman RJ, Sorger JM, McVeigh ER: Real-time volume rendered MRI for interventional guidance. J Cardiovasc Magn Reson 4(4):431–442, 2002Google Scholar
  12. 12.
    Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER: Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med 50(2):315–321, 2003Google Scholar
  13. 13.
    Navkar NV, Yeniaras E, Shah DJ, Tsekos NV, Deng Z: Generation of 4D access corridors from real-time multislice MRI for guiding transapical aortic valvuloplasties. Med Image Comput Comput Assist Interv 14(Pt 1):251–258, 2011Google Scholar
  14. 14.
    Navkar NV, Deng Z, Shah DJ, Tsekos NV: A framework for integrating real-time MRI with robot control: application to simulated transapical cardiac interventions. IEEE Trans Biomed Eng 60(4):1023–1033, 2013Google Scholar
  15. 15.
    Yeniaras E, Navkar NV, Sonmez AE, Shah DJ, Deng Z, Tsekos NV: MR-based real time path planning for cardiac operations with transapical access. Med Image Comput Comput Assist Interv 14(Pt 1):25–32, 2011Google Scholar
  16. 16.
    Jolesz FA, Nabavi A, Kikinis R: Integration of interventional MRI with computer-assisted surgery. J Magn Reson Imaging 13(1):69–77, 2001Google Scholar
  17. 17.
    Lewin JS, Nour SG, Duerk JL: Magnetic resonance image-guided biopsy and aspiration. Top Magn Reson Imaging 11(3):173–183, 2000Google Scholar
  18. 18.
    Eggers H, Weiss S, Boernert P, Boesiger P: Image-based tracking of optically detunable parallel resonant circuits. Magn Reson Med 49(6):1163–1174, 2003Google Scholar
  19. 19.
    Quick HH, Kuehl H, Kaiser G, Hornscheidt D, Mikolajczyk KP, Aker S, Debatin JF, Ladd ME: Interventional MRA using actively visualized catheters, TrueFISP, and real-time image fusion. Magn Reson Med 49(1):129–137, 2003Google Scholar
  20. 20.
    Seimenis I, Tsekos NV, Keroglou C, Eracleous E, Pitris C, Christoforou EG: An approach for preoperative planning and performance of MR-guided interventions demonstrated with a manual manipulator in a 1.5T MRI scanner. Cardiovasc Intervent Radiol 35(2):359–367, 2012Google Scholar
  21. 21.
    Christoforou E, Akbudak E, Ozcan A, Karanikolas M, Tsekos NV: Performance of interventions with manipulator-driven real-time MR guidance: implementation and initial in vitro tests. Magn Reson Imaging 25(1):69–77, 2007Google Scholar
  22. 22.
    Tsekos NV, Ozcan A, Christoforou E: A prototype manipulator for magnetic resonance-guided interventions inside standard cylindrical magnetic resonance imaging scanners. J Biomech Eng 127(6):972–980, 2005Google Scholar
  23. 23.
    Yeniaras E, Navkar NV, Syed MA, Tsekos NV: A computational system for performing robot-assisted cardiac surgeries with MRI guidance. Proceedings of the 15th International Transformative Systems Conference, Society for Design and Process Science, 2010, pp. 1–6Google Scholar
  24. 24.
    Rincón-Nigro M, Navkar NV, Tsekos NV, Deng Z: GPU-accelerated interactive visualization and planning of neurosurgical interventions. IEEE Comput Graph Appl 34(1):22–31, 2014Google Scholar
  25. 25.
    Zhi-Pei L, Lauterbur PC: Principles of magnetic resonance imaging: a signal processing perspective. Wiley-IEEE Press, 2000Google Scholar
  26. 26.
    Suga M, Matsuda T, Komori M, Minato K, Takahashi T: Keyhole method for high-speed human cardiac cine MR imaging. J Magn Reson Imaging 10(5):778–783, 1999Google Scholar
  27. 27.
    Wacker FK, Elgort D, Hillenbrand CM, Duerk JL, Lewin JS: The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI. AJR Am J Roentgenol 183(2):391–395, 2004Google Scholar
  28. 28.
    Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C: Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng 9:351–387, 2007Google Scholar
  29. 29.
    Guttman MA, McVeigh ER: Techniques for fast stereoscopic MRI. Magn Reson Med 46(2):317–323, 2001Google Scholar
  30. 30.
    Navkar N, Yeniaras E, Shah DJ, Tsekos NV, Deng Z: Extracting geometric features of aortic-valve annulus motion from dynamic cardiac mri for guiding interventions. IEEE International Symposium on Biomedical Imaging (ISBI):1302–1305, 2011Google Scholar
  31. 31.
    Gao X, Navkar NV, Shah DJ, Tsekos NV, Deng Z: Intraoperative registration of preoperative 4D cardiac anatomy with real-time MR images. 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), 2012, pp. 583–588Google Scholar
  32. 32.
    Yeniaras E, Lamaury J, Navkar NV, Shah DJ, Chin K, Deng Z, Tsekos NV: Magnetic resonance based control of a robotic manipulator for interventions in the beating heart. 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 6270–6275Google Scholar
  33. 33.
    Navkar NV, Deng Z, Shah DJ, Bekris K, Tsekos NV: Visual and force-feedback guidance for robot-assisted interventions in the beating heart with real-time MRI. IEEE International Conference on Robotics and Automation (ICRA) 2012, St Paul, MN, 2012, pp. 689–694.Google Scholar
  34. 34.
    Bernstein M, King K, Zhou X: Handbook of MRI pulse sequences, 1st edition. Chapter 10.1, Elsevier Academic Press, 2004, p. 292Google Scholar
  35. 35.
    Kettenbach J, Wong T, Kacher D, Hata N, Schwartz RB, Black PM, Kikinis R, Jolesz FA: Computer-based imaging and interventional MRI: applications for neurosurgery. Comput Med Imaging Graph 23(5):245–258, 1999Google Scholar
  36. 36.
    Gering DT, Nabavi A, Kikinis R, Hata N, O'Donnell LJ, Grimson WE, Jolesz FA, Black PM, Wells WM: An integrated visualization system for surgical planning and guidance using image fusion and an open MR. J Magn Reson Imaging 13(6):967–975, 2001Google Scholar
  37. 37.
    Nguyen TD, Ding G, Watts R, Wang Y: Optimization of view ordering for motion artifact suppression. Magn Reson Imaging 19(7):951–957, 2001Google Scholar
  38. 38.
    Jhooti P, Keegan J, Gatehouse PD, Collins S, Rowe A, Taylor AM, Firmin DN: 3D coronary artery imaging with phase reordering for improved scan efficiency. Magn Reson Med 41(3):555–562, 1999Google Scholar
  39. 39.
    Morales Mojica CM, Navkar NV, Tsekos NV, Tsagkaris D, Webb A, Birbilis T, Seimenis I: Holographic Interface for three-dimensional visualization of MRI on HoloLens: a prototype platform for MRI guided neurosurgeries. IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), 2017, pp. 21–27Google Scholar

Copyright information

© Society for Imaging Informatics in Medicine 2018

Authors and Affiliations

  • Jose D. Velazco Garcia
    • 1
  • Nikhil V. Navkar
    • 2
  • Dawei Gui
    • 3
  • Cristina M. Morales
    • 1
  • Eftychios G. Christoforou
    • 4
  • Alpay Ozcan
    • 5
  • Julien Abinahed
    • 2
  • Abdulla Al-Ansari
    • 2
  • Andrew Webb
    • 6
  • Ioannis Seimenis
    • 7
  • Nikolaos V. Tsekos
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of HoustonHoustonUSA
  2. 2.Department of SurgeryHamad Medical CorporationDohaQatar
  3. 3.GE HealthcareMilwaukeeUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of CyprusNicosiaCyprus
  5. 5.Department of Biomedical Device TechnologiesAcıbadem Mehmet Ali Aydınlar UniversityIstanbulTurkey
  6. 6.C.J. Gorter Center for High Field MRILeiden University Medical CenterLeidenNetherlands
  7. 7.Department of MedicineDemocritus University of ThraceAlexandropoliGreece

Personalised recommendations