Software & Systems Modeling

, Volume 18, Issue 4, pp 2633–2653 | Cite as

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs

  • Ivano Malavolta
  • Leonardo MostardaEmail author
  • Henry Muccini
  • Enver Ever
  • Krishna Doddapaneni
  • Orhan Gemikonakli
Regular Paper


This paper proposes A4WSN, an architecture-driven modelling platform for the development and the analysis of wireless sensor networks (WSNs). A WSN consists of spatially distributed sensor nodes that cooperate in order to accomplish a specific task. Sensor nodes are cheap, small, and battery-powered devices with limited processing capabilities and memory. WSNs are mostly developed directly on the top of the operating system. They are tied to the hardware configuration of the sensor nodes, and their design and implementation can require cooperation with a myriad of system stakeholders with different backgrounds. The peculiarities of WSNs and current development practices bring a number of challenges, ranging from hardware and software coupling, limited reuse, and the late assessment of WSN quality properties. As a way to overcome a number of existing limitations, this study presents a multi-view modelling approach that supports the development and analysis of WSNs. The framework uses different models to describe the software architecture, hardware configuration, and physical deployment of a WSN. A4WSN allows engineers to perform analysis and code generation in earlier stages of the WSN development life cycle. The A4WSN platform can be extended with third-party plug-ins providing additional analysis or code generation engines. We provide evidence of the applicability of the proposed platform by developing PlaceLife, an A4WSN plug-in for estimating the WSN lifetime by taking various physical obstacles in the deployment environment into account. In turn, PlaceLife has been applied to a real-world case study in the health care domain as a running example.


MDE Software engineering Software architecture WSNs Energy 



Funding was provided by RIDITT (Grant No. Italian government).


  1. 1.
    Al-karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wirel. Commun. 11, 6–28 (2004)CrossRefGoogle Scholar
  2. 2.
    Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a survey. Comput. Netw. 54(15), 2688–2710 (2010)CrossRefGoogle Scholar
  3. 3.
    Beckmann, K., Thoss, M.: A model-driven software development approach using OMG DDS for wireless sensor networks. In: Proceedings of the 8th IFIP WG 10.2 International Conference on Software Technologies for Embedded and Ubiquitous Systems, SEUS’10, pp. 95–106 (2010)Google Scholar
  4. 4.
    Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Modeling and analyzing wireless sensor networks with VeriSensor. In: Petri Net and Software Engineering (PNSE), vol. 851, pp. 60–76. CEUR, Hamburg, Germany (2012)Google Scholar
  5. 5.
    Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., Consel, C.: DiaSuite: A tool suite to develop sense/compute/control applications. Sci. Comput. Program. 79, 39–51 (2014). Experimental Software and Toolkits (EST 4): A special issue of the Workshop on Academic Software Development Tools and Techniques (WASDeTT-3 2010)Google Scholar
  6. 6.
    Bjornemo, E., Johansson, M., Ahlen, A.: Two hops is one too many in an energylimited wireless sensor network. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 181–184 (2007)Google Scholar
  7. 7.
    Blumenthal, J., Handy, M., Golatowski, F., Haase, M., Timmermann, D.: Wireless sensor networks—new challenges in software engineering. In: Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA ’03. IEEE Conference, vol. 1, pp. 551–556 (2003)Google Scholar
  8. 8.
    Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges and directions in formalizing the semantics of modeling languages. Comput. Sci. Inf. Syst. 8(2), 225–253 (2011)CrossRefGoogle Scholar
  9. 9.
    Chandra, T.B., Dwivedi, A.K.: Programming languages for wireless sensor networks: a comparative study. In: Computing for Sustainable Global Development (INDIACom), 2015 2nd International Conference on, pp. 1702–1708. IEEE (2015)Google Scholar
  10. 10.
    Chang, X.: Network simulations with OPNET. In: Proceedings of the 31st Conference on Winter Simulation: Simulation—a Bridge to the Future—Volume 1, WSC ’99 (1999)Google Scholar
  11. 11.
    Cheng, C., Lu, R., Petzoldt, A., Takagi, T.: Securing the internet of things in a quantum world. Commun. Mag. 55(2), 116–120 (2017)CrossRefGoogle Scholar
  12. 12.
    Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automating co-evolution in model-driven engineering. In: 12th International IEEE Enterprise Distributed Object Computing Conference, ECOC 2008, 15–19 September 2008, Munich, Germany, pp. 222–231. IEEE Computer Society (2008)Google Scholar
  13. 13.
    Dantas, P., Rodrigues, T., Batista, T., Delicato, F., Pires, P., Li, W., Zomaya, A.: Lwissy: a domain specific language to model wireless sensor and actuators network systems. In: 2013 4th International Workshop on Software Engineering for Sensor Network Applications (SESENA), pp. 7–12 (2013)Google Scholar
  14. 14.
    Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121 (2006). CrossRefGoogle Scholar
  15. 15.
    Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Developing next generation ADLs through MDE techniques. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering, vol. 1, pp. 85–94. IEEE (2010)Google Scholar
  16. 16.
    Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini, H.: A model-driven engineering framework for architecting and analysing wireless sensor networks. In: SESENA, pp. 1–7 (2012)Google Scholar
  17. 17.
    Fuchs, G., German, R.: UML2 activity diagram based programming of wireless sensor networks. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Sensor Network Applications, SESENA ’10, pp. 8–13 (2010)Google Scholar
  18. 18.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, New York (2005)CrossRefGoogle Scholar
  19. 19.
    Gotzhein, R., Krämer, M., Litz, L., Chamaken, A.: Energy-aware system design with SDL. In: Proceedings of the 14th International SDL Conference on Design for Motes and Mobiles, SDL’09, pp. 19–33. Springer, Berlin (2009)Google Scholar
  20. 20.
    Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences (HICSS), Washington, DC, USA (2000)Google Scholar
  21. 21.
    Hill, J.L.: System architecture for wireless sensor networks. Ph.D. thesis, University of California, Berkeley (2003). AAI3105239Google Scholar
  22. 22.
    Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless sensor network. In: Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, WSNA ’03, pp. 115–121 (2003)Google Scholar
  23. 23.
    Iovino, L., Pierantonio, A., Malavolta, I.: On the impact significance of metamodel evolution in mde. J. Object Technol. 11(3), 1–33 (2012)CrossRefGoogle Scholar
  24. 24.
    ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011 Systems and software engineering – Architecture description (2011)Google Scholar
  25. 25.
    Khalil, J., Liscano, J.R., Bradbury, J.: A survey of modeling techniques for wireless sensor networks. In: SENSORCOMM 2011, The Fifth International Conference on Sensor Technologies and Applications, pp. 103–109 (2011)Google Scholar
  26. 26.
    Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A., Shnayder, V., Mainland, G., Welsh, M., Moulton, S.: Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput. 3(4), 16–23 (2004). CrossRefGoogle Scholar
  27. 27.
    Losilla, F., Vicente-Chicote, C., Álvarez, B., Iborra, A., Sánchez, P.: Wireless sensor network application development an architecture-centric MDE approach. In: Oquendo, F. (ed.) ECSA, LNCS, vol. 4758, pp. 179–194. Springer, Berlin (2007)Google Scholar
  28. 28.
    Malavolta, I.: A4WSN—Programming Framework and Implementation details (2018). Accessed 4 April 2018
  29. 29.
    Malavolta, I., Mostarda, L., Muccini, H., Doddapaneni, K.: The A4WSN Modelling languages (2018). Accessed 4 April 2018
  30. 30.
    Malavolta, I., Muccini, H.: A Study on MDE approaches for engineering wireless sensor networks. In: Proceedings of the 40th Euromicro Conference series on Software Engineering and Advanced Applications (SEAA), August 2014 (2014)Google Scholar
  31. 31.
    Malavolta, I., Muccini, H.: A Survey on the specification of the physical environment of wireless sensor networks. In: Proceedings of the 40th Euromicro Conference series on Software Engineering and Advanced Applications (SEAA), August 2014 (2014)Google Scholar
  32. 32.
    Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.: Providing architectural languages and tools interoperability through model transformation technologies. IEEE Trans. Softw. Eng. 36(1), 119–140 (2010)CrossRefGoogle Scholar
  33. 33.
    Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description from under the technology lamppost. Inf. Softw. Technol. 49(1), 12–31 (2007)CrossRefGoogle Scholar
  34. 34.
    Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. 37(4), 316–344 (2005)CrossRefGoogle Scholar
  35. 35.
    Mottola, L., Pathak, A., Bakshi, A., Prasanna, V., Picco, G.: Enabling scope-based interactions in sensor network macroprogramming. In: IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems, 2007. MASS 2007. pp. 1–9 (2007)Google Scholar
  36. 36.
    Mottola, L., Picco, G.P.: Programming wireless sensor networks: Fundamental concepts and state of the art. ACM Comput. Surv. 43, 19:1–19:51 (2011)CrossRefGoogle Scholar
  37. 37.
    Mottola, L., Picco, G.P.: Middleware for wireless sensor networks: an outlook. J. Internet Serv. Appl. 3(1), 31–39 (2012)CrossRefGoogle Scholar
  38. 38.
    Mozumdar, M., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri, S.: A framework for modeling, simulation and automatic code generation of sensor network application. In: 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ’08, pp. 515–522 (2008)Google Scholar
  39. 39.
    Mozumdar, M.M.R., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri, S.: A framework for modeling, simulation and automatic code generation of sensor network application. In: SECON, pp. 515–522 (2008)Google Scholar
  40. 40.
    Newport, C., Kotz, D., Yuan, Y., Gray, R.S., Liu, J., Elliott, C.: Experimental evaluation of wireless simulation assumptions. Simulation 83(9), 643–661 (2007)CrossRefGoogle Scholar
  41. 41.
    Olveczky, P., Thorvaldsen, S.: Formal modeling and analysis of wireless sensor network algorithms in real-time Maude. In: 20th International Parallel and Distributed Processing Symposium, 2006. IPDPS 2006, p. 8 (2006).
  42. 42.
    Pahlavan, K., Krishnamurthy, P.: Networking Fundamentals: Wide, Local and Personal Area Communications. Wiley, New York (2009)CrossRefzbMATHGoogle Scholar
  43. 43.
    Pahlavan, K., Krishnamurthy, P.: Networking Fundamentals. Wiley, Chichester (2009)CrossRefzbMATHGoogle Scholar
  44. 44.
    Paige, R.F., Kolovos, D.S., Polack, F.A.: A tutorial on metamodelling for grammar researchers. Sci. Comput. Program. 96, Part 4, 396–416 (2014)CrossRefGoogle Scholar
  45. 45.
    Patel, P., Pathak, A., Cassou, D., Issarny, V.: Enabling high-level application development in the internet of things. In: Zuniga, M., Dini, G. (eds.), Sensor Systems and Software, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 122, pp. 111–126 (2013)Google Scholar
  46. 46.
    Pediaditakis, D., Tselishchev, Y., Boulis, A.: Performance and scalability evaluation of the castalia wireless sensor network simulator. In: Proceedings of the 3rd International ICST Conference on Simulation Tools and Techniques, SIMUTools ’10, pp. 53:1–53:6 (2010)Google Scholar
  47. 47.
    Picco, G.P.: Software engineering and wireless sensor networks: happy marriage or consensual divorce? In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research. FoSER. NY, USA (2010)Google Scholar
  48. 48.
    Rappaport, T.: Wireless communications: principles and practice. Prentice Hall communications engineering and emerging technologies series. Prentice Hall PTR (1996)Google Scholar
  49. 49.
    Rodrigues, T., Batista, T., Delicato, F., Pires, P., Zomaya, A.: Model-driven approach for building efficient wireless sensor and actuator network applications. In: 2013 4th International Workshop on Software Engineering for Sensor Network Applications (SESENA), pp. 43–48 (2013)Google Scholar
  50. 50.
    Romer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wirel. Commun. 11(6), 54–61 (2004)CrossRefGoogle Scholar
  51. 51.
    Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., Polack, F.: Comparing model-metamodel and transformation-metamodel coevolution. In: International Workshop on Models and Evolutions (2010)Google Scholar
  52. 52.
    Ruscio, D.D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engineering. IEEE Softw. 29(6), 78–84 (2012)CrossRefGoogle Scholar
  53. 53.
    Ruscio, D.D., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: Model-driven techniques to enhance architectural languages interoperability. In: FASE, pp. 26–42 (2012)Google Scholar
  54. 54.
    Samper, L., Maraninchi, F., Mounier, L., Mandel, L.: Glonemo: Global and accurate formal models for the analysis of ad-hoc sensor networks. In: Proceedings of the First International Conference on Integrated Internet Ad Hoc and Sensor Networks, InterSense ’06. New York, NY, USA (2006)Google Scholar
  55. 55.
    Seybold, J.S.: Introduction to RF Propagation. Wiley, Newark (2005)CrossRefGoogle Scholar
  56. 56.
    Shimizu, R., Tei, K., Fukazawa, Y., Honiden, S.: Model driven development for rapid prototyping and optimization of wireless sensor network applications. In: Proceedings of SESENA ’11, pp. 31–36. ACM, New York, NY, USA (2011)Google Scholar
  57. 57.
    Stankovic, J.A.: Research challenges for wireless sensor networks. SIGBED Rev. 1, 9–12 (2004)CrossRefGoogle Scholar
  58. 58.
    Stanley-Marbell, P., Basten, T., Rousselot, J., Oliver, R.S., Karl, H., Geilen, M., Hoes, R., Fohler, G., Decotignie, J.D.: System models in wireless sensor networks. Technical Report ESR-2008-06, Eindhoven University of Technology (2008)Google Scholar
  59. 59.
    Szyperski, C.: Component Software. Beyond Object Oriented Programming. Addison Wesley, Boston (1998)Google Scholar
  60. 60.
    van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys ’03, pp. 171–180. New York, NY, USA (2003)Google Scholar
  61. 61.
    Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Simutools ’08: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, pp. 1–10 (2008)Google Scholar
  62. 62.
    Vicente-Chicote, C., Losilla, F., Álvarez, B., Iborra, A., Sánchez, P.: Applying MDE to the development of flexible and reusable wireless sensor networks. Int. J. Coop. Inf. Syst. 16(3/4), 393–412 (2007)CrossRefGoogle Scholar
  63. 63.
    Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ivano Malavolta
    • 1
  • Leonardo Mostarda
    • 2
    Email author
  • Henry Muccini
    • 3
  • Enver Ever
    • 4
  • Krishna Doddapaneni
    • 5
  • Orhan Gemikonakli
    • 6
  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Computer Science DepartmentUniversity of CamerinoCamerinoItaly
  3. 3.Department of Information Engineering, Computer Science, and Mathematics - DISIMUniversity of L’AquilaL’AquilaItaly
  4. 4.Computer EngineeringMiddle East Technical University, Northern Cyprus CampusGüzelyurt, Mersin 10Turkey
  5. 5.Wireless Innovation Networking GroupAltiux Innovations Inc.San JoseUSA
  6. 6.Computer Design EngineeringMiddlesex UniversityLondonUK

Personalised recommendations