Advertisement

Odontology

pp 1–11 | Cite as

Cytotoxic effects of a chlorhexidine mouthwash and of an enzymatic mouthwash on human gingival fibroblasts

  • Ana Sofia CoelhoEmail author
  • Mafalda Laranjo
  • Ana Cristina Gonçalves
  • Anabela Paula
  • Siri Paulo
  • Ana Margarida Abrantes
  • Francisco Caramelo
  • Manuel Marques Ferreira
  • Mário Jorge Silva
  • Eunice Carrilho
  • Maria Filomena Botelho
Original Article

Abstract

The aim of this study was to evaluate the cytotoxic effects of an enzymatic mouthwash and of a chlorhexidine mouthwash on human gingival fibroblasts. The metabolic activity of the fibroblasts exposed to each mouthwash was assessed by the MTT assay and the protein content was assessed by the SRB assay. The flow cytometry was used to evaluate the cell cycle and the types of cell death. The oxidative status was evaluated through the DCF and the DHE probes and the intracellular GSH concentration and the mitochondrial membrane potential through JC-1. The cytotoxicity of both mouthwashes was found to be dependent on the exposure time and on the concentration. However, the cytotoxicity of the enzymatic mouthwash was found to be lower than that of the chlorhexidine mouthwash. A trend towards increased oxidative stress was observed for both mouthwashes. After exposing the fibroblasts to the mouthwashes, a G2/M phase block was observed and cell death occurred predominantly by necrosis. The effects of chlorhexidine on fibroblasts were identified at lower concentrations than those used in clinical practice. Therefore, the use of chlorhexidine as an antiseptic in surgical and postoperative situations should be limited. In order to clarify the clinical significance of the enzymatic mouthwash cytotoxicity new clinical studies will be necessary.

Keywords

Chlorhexidine Mouthwash Enzymatic mouthwash Cytotoxicity Fibroblasts 

Notes

Funding

This work was supported by a grant from Portuguese Diabetes Association (“Bolsa de Estudo Pedro Eurico Lisboa SPD/BAYER”, 2015), CNC.IBILI UID/NEU/04539/2013, PT2020 - COMPETE 2020 and (POCI) POCI-01-0145-FEDER-007440.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Tenovuo J. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis. 2002;8(1):23–9.CrossRefGoogle Scholar
  2. 2.
    Soukka T, Lumikari M, Tenovuo J. Combined bactericidal effect of human lactoferrin and lysozyme against Streptococcus mutans serotype c. Microb Ecol Health Dis. 1991;4:259–64.CrossRefGoogle Scholar
  3. 3.
    Lenander-Lumikari M, Mansson-Rahemtulla B, Rahemtulla F. Lysozyme enhances the inhibitory effects of the peroxidase system on glucose metabolism of Streptococcus mutans. J Dent Res. 1992;71(3):484–90.  https://doi.org/10.1177/00220345920710031201.CrossRefPubMedGoogle Scholar
  4. 4.
    Lynge Pedersen AM, Belstrom D. The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent. 2019;80(Suppl 1):S3–12.  https://doi.org/10.1016/j.jdent.2018.08.010.CrossRefPubMedGoogle Scholar
  5. 5.
    Kirstila V, Lenander-Lumikari M, Soderling E, Tenovuo J. Effects of oral hygiene products containing lactoperoxidase, lysozyme, and lactoferrin on the composition of whole saliva and on subjective oral symptoms in patients with xerostomia. Acta Odontol Scand. 1996;54(6):391–7.CrossRefGoogle Scholar
  6. 6.
    Lenander-Lumikari M, Tenovuo J, Mikola H. Effects of a lactoperoxidase system-containing toothpaste on levels of hypothiocyanite and bacteria in saliva. Caries Res. 1993;27(4):285–91.  https://doi.org/10.1159/000261552.CrossRefPubMedGoogle Scholar
  7. 7.
    Tenovuo J, Mansson-Rahemtulla B, Pruitt KM, Arnold R. Inhibition of dental plaque acid production by the salivary lactoperoxidase antimicrobial system. Infect Immun. 1981;34(1):208–14.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Supranoto SC, Slot DE, Addy M, Weijden GA. The effect of chlorhexidine dentifrice or gel versus chlorhexidine mouthwash on plaque, gingivitis, bleeding and tooth discoloration: a systematic review. Int J Dent Hyg. 2015;13(2):83–92.  https://doi.org/10.1111/idh.12078.CrossRefPubMedGoogle Scholar
  9. 9.
    Coelho A, Paula ABP, Carrilho TMP, da Silva M, Botelho M, Carrilho E. Chlorhexidine mouthwash as an anticaries agent: a systematic review. Quintessence Int. 2017;48(7):585–91.  https://doi.org/10.3290/j.qi.a38353.CrossRefPubMedGoogle Scholar
  10. 10.
    Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro. 2008;22(2):308–17.  https://doi.org/10.1016/j.tiv.2007.09.012.CrossRefPubMedGoogle Scholar
  11. 11.
    Oncag O, Hosgor M, Hilmioglu S, Zekioglu O, Eronat C, Burhanoglu D. Comparison of antibacterial and toxic effects of various root canal irrigants. Int Endod J. 2003;36(6):423–32.CrossRefGoogle Scholar
  12. 12.
    Pucher JJ, Daniel JC. The effects of chlorhexidine digluconate on human fibroblasts in vitro. J Periodontol. 1992;63(6):526–32.  https://doi.org/10.1902/jop.1992.63.6.526.CrossRefPubMedGoogle Scholar
  13. 13.
    Babich H, Wurzburger BJ, Rubin YL, Sinensky MC, Blau L. An in vitro study on the cytotoxicity of chlorhexidine digluconate to human gingival cells. Cell Biol Toxicol. 1995;11(2):79–88.CrossRefGoogle Scholar
  14. 14.
    Chang YC, Huang FM, Tai KW, Chou MY. The effect of sodium hypochlorite and chlorhexidine on cultured human periodontal ligament cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92(4):446–50.  https://doi.org/10.1067/moe.2001.116812.CrossRefPubMedGoogle Scholar
  15. 15.
    Damour O, Hua SZ, Lasne F, Villain M, Rousselle P, Collombel C. Cytotoxicity evaluation of antiseptics and antibiotics on cultured human fibroblasts and keratinocytes. Burns. 1992;18(6):479–85.CrossRefGoogle Scholar
  16. 16.
    Tatnall FM, Leigh IM, Gibson JR. Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacol. 1990;3(3):157–63.CrossRefGoogle Scholar
  17. 17.
    Segura JJ, Jimenez-Rubio A, Guerrero JM, Calvo JR. Comparative effects of two endodontic irrigants, chlorhexidine digluconate and sodium hypochlorite, on macrophage adhesion to plastic surfaces. J Endod. 1999;25(4):243–6.  https://doi.org/10.1016/S0099-2399(99)80151-4.CrossRefPubMedGoogle Scholar
  18. 18.
    Cabral CT, Fernandes MH. In vitro comparison of chlorhexidine and povidone-iodine on the long-term proliferation and functional activity of human alveolar bone cells. Clin Oral Investig. 2007;11(2):155–64.  https://doi.org/10.1007/s00784-006-0094-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Bhandari M, Adili A, Schemitsch EH. The efficacy of low-pressure lavage with different irrigating solutions to remove adherent bacteria from bone. J Bone Joint Surg Am. 2001;83-A(3):412–9.CrossRefGoogle Scholar
  20. 20.
    Helgeland K, Heyden G, Rolla G. Effect of chlorhexidine on animal cells in vitro. Scand J Dent Res. 1971;79(3):209–15.PubMedGoogle Scholar
  21. 21.
    Gabler WL, Roberts D, Harold W. The effect of chlorhexidine on blood cells. J Periodontal Res. 1987;22(2):150–5.CrossRefGoogle Scholar
  22. 22.
    Goldschmidt P, Cogen R, Taubman S. Cytopathologic effects of chlorhexidine on human cells. J Periodontol. 1977;48(4):212–5.  https://doi.org/10.1902/jop.1977.48.4.212.CrossRefPubMedGoogle Scholar
  23. 23.
    Alleyn CD, O’Neal RB, Strong SL, Scheidt MJ, Dyke TE, McPherson JC. The effect of chlorhexidine treatment of root surfaces on the attachment of human gingival fibroblasts in vitro. J Periodontol. 1991;62(7):434–8.  https://doi.org/10.1902/jop.1991.62.7.434.CrossRefPubMedGoogle Scholar
  24. 24.
    Balloni S, Locci P, Lumare A, Marinucci L. Cytotoxicity of three commercial mouthrinses on extracellular matrix metabolism and human gingival cell behaviour. Toxicol In Vitro. 2016;34:88–96.  https://doi.org/10.1016/j.tiv.2016.03.015.CrossRefPubMedGoogle Scholar
  25. 25.
    Mariotti AJ, Rumpf DA. Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol. 1999;70(12):1443–8.  https://doi.org/10.1902/jop.1999.70.12.1443.CrossRefPubMedGoogle Scholar
  26. 26.
    Eren K, Ozmeric N, Sardas S. Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation of chlorhexidine. Clin Oral Investig. 2002;6(3):150–4.  https://doi.org/10.1007/s00784-002-0168-1.CrossRefPubMedGoogle Scholar
  27. 27.
    Wyganowska-Swiatkowska M, Kotwicka M, Urbaniak P, Nowak A, Skrzypczak-Jankun E, Jankun J. Clinical implications of the growth-suppressive effects of chlorhexidine at low and high concentrations on human gingival fibroblasts and changes in morphology. Int J Mol Med. 2016;37(6):1594–600.  https://doi.org/10.3892/ijmm.2016.2550.CrossRefPubMedGoogle Scholar
  28. 28.
    Flemingson, Emmadi P, Ambalavanan N, Ramakrishnan T, Vijayalakshmi R. Effect of three commercial mouth rinses on cultured human gingival fibroblast: an in vitro study. Indian J Dent Res. 2008;19(1):29–35.CrossRefGoogle Scholar
  29. 29.
    Hidalgo E, Dominguez C. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro. 2001;15(4–5):271–6.CrossRefGoogle Scholar
  30. 30.
    Rajabalian S, Mohammadi M, Mozaffari B. Cytotoxicity evaluation of Persica mouthwash on cultured human and mouse cell lines in the presence and absence of fetal calf serum. Indian J Dent Res. 2009;20(2):169–73.  https://doi.org/10.4103/0970-9290.52894.CrossRefPubMedGoogle Scholar
  31. 31.
    Verma UP, Dixit J. Development of a human gingival fibroblast (HGF) cell line for the evaluation of a novel mouthwash from azadirachta indica vis-à-vis chlorhexidine. Int J Pharm Pharm Sci. 2012;4(2):217–21.Google Scholar
  32. 32.
    Cline NV, Layman DL. The effects of chlorhexidine on the attachment and growth of cultured human periodontal cells. J Periodontol. 1992;63(7):598–602.  https://doi.org/10.1902/jop.1992.63.7.598.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsourounakis I, Palaiologou-Gallis AA, Stoute D, Maney P, Lallier TE. Effect of essential oil and chlorhexidine mouthwashes on gingival fibroblast survival and migration. J Periodontol. 2013;84(8):1211–20.  https://doi.org/10.1902/jop.2012.120312.CrossRefPubMedGoogle Scholar
  34. 34.
    Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74.  https://doi.org/10.1016/j.ejmech.2015.04.040.CrossRefPubMedGoogle Scholar
  35. 35.
    Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453–62.  https://doi.org/10.1016/j.cub.2014.03.034.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Aliko A, Alushi A, Tafaj A, Isufi R. Evaluation of the clinical efficacy of Biotene Oral Balance in patients with secondary Sjogren’s syndrome: a pilot study. Rheumatol Int. 2012;32(9):2877–81.  https://doi.org/10.1007/s00296-011-2085-6.CrossRefPubMedGoogle Scholar
  37. 37.
    Shahdad SA, Taylor C, Barclay SC, Steen IN, Preshaw PM. A double-blind, crossover study of Biotene Oralbalance and BioXtra systems as salivary substitutes in patients with post-radiotherapy xerostomia. Eur J Cancer Care (Engl). 2005;14(4):319–26.  https://doi.org/10.1111/j.1365-2354.2005.00587.x.CrossRefGoogle Scholar
  38. 38.
    Jose A, Siddiqi M, Cronin M, DiLauro TS, Bosma ML. A randomized clinical trial in subjects with dry mouth evaluating subjective perceptions of an experimental oral gel, an oral rinse and a mouth spray compared to water. Am J Dent. 2016;29(1):58–64.PubMedGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  • Ana Sofia Coelho
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  • Mafalda Laranjo
    • 2
    • 3
    • 4
    • 5
    • 6
  • Ana Cristina Gonçalves
    • 2
    • 3
    • 4
    • 5
    • 6
  • Anabela Paula
    • 1
    • 2
    • 3
    • 4
    • 5
  • Siri Paulo
    • 1
    • 2
    • 3
    • 4
    • 5
    • 7
  • Ana Margarida Abrantes
    • 2
    • 3
    • 4
    • 5
    • 6
  • Francisco Caramelo
    • 2
    • 3
    • 4
    • 5
    • 8
  • Manuel Marques Ferreira
    • 1
    • 2
    • 3
    • 4
    • 5
    • 7
  • Mário Jorge Silva
    • 9
  • Eunice Carrilho
    • 1
    • 2
    • 3
    • 4
    • 5
  • Maria Filomena Botelho
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Institute of Integrated Clinical Practice, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCoimbraPortugal
  4. 4.CIMAGO – Center of Investigation on Enviromnent, Genetics and Oncobiology, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  5. 5.CNC.IBILIUniversity of CoimbraCoimbraPortugal
  6. 6.Biophysics Institute, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  7. 7.Endodontics Institute, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  8. 8.Laboratory of Biostatistics and Medical Informatics, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  9. 9.Faculty of Dental MedicineUniversity of OportoOportoPortugal

Personalised recommendations