Advertisement

Odontology

pp 1–12 | Cite as

Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis

  • Eri Ikeda
  • Takahiko Shiba
  • Yuichi Ikeda
  • Wataru Suda
  • Akinori Nakasato
  • Yasuo TakeuchiEmail author
  • Miyuki Azuma
  • Masahira Hattori
  • Yuichi Izumi
Original Article

Abstract

The present study aimed to identify and compare the microbial signatures between periodontally healthy and periodontitis subjects using 454 sequences of 16S rRNA genes. Subgingival plaque samples were collected from ten periodontally healthy subjects and ten matched chronic periodontitis patients. Bacterial DNA was extracted and next-generation sequencing of 16S rRNA genes was performed. The microbial composition differed between healthy subjects and periodontitis patients at all phylogenetic levels. Particularly, 16 species, including Lautropia mirabilis and Neisseria subflava predominated in healthy subjects, whereas nine species, including Porphyromonas gingivalis and Filifactor alocis predominated in periodontitis. UniFrac, a principal coordinate and network analysis, confirmed distinct community profiles in healthy subjects and periodontitis patients. Using predicted function profiling, pathways involved in phenylpropanoid, GPI-anchor biosynthesis, and metabolism of alanine, arginine, aspartate, butanoate, cyanoamino acid, fatty acid, glutamate, methane, proline, and vitamin B6 were significantly over-represented in periodontitis patients. These results highlight the oral microbiota alterations in microbial composition in periodontitis and suggest the genes and metabolic pathways associated with health and periodontitis. Our findings help to further elucidate microbial composition and interactions in health and periodontitis.

Keywords

16S rRNA Bacteria Oral microbiome Periodontitis Pyrosequencing 

Notes

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science KAKENHI; under Grant 26463129 and under Grant 17K11981. We also thank Dr. Walter Meinzer and Dr. Daiki Tanaka for critical reading of the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interests.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of Tokyo Medical and Dental University Institutional Review Board (No. 1138) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all enrolled individuals.

Supplementary material

10266_2019_452_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1663 kb)

References

  1. 1.
    Burt B, Research SiaTCotAAoP. Position paper: epidemiology of periodontal diseases. J Periodontol. 2005;76(8):1406–19.  https://doi.org/10.1902/jop.2005.76.8.1406.CrossRefGoogle Scholar
  2. 2.
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.  https://doi.org/10.1128/jb.00542-10.CrossRefGoogle Scholar
  3. 3.
    Jenkinson HF, Lamont RJ. Oral microbial communities in sickness and in health. Trends Microbiol. 2005;13(12):589–95.  https://doi.org/10.1016/j.tim.2005.09.006.CrossRefGoogle Scholar
  4. 4.
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32.  https://doi.org/10.1128/JCM.43.11.5721-5732.2005.CrossRefGoogle Scholar
  5. 5.
    Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014;162(2 Pt A):22–38.  https://doi.org/10.1016/j.imlet.2014.08.017.CrossRefGoogle Scholar
  6. 6.
    Kilian M, Chapple IL, Hannig M, Marsh PD, Meuric V, Pedersen AM, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66.  https://doi.org/10.1038/sj.bdj.2016.865.CrossRefGoogle Scholar
  7. 7.
    Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontology. 2000;2005(38):72–122.  https://doi.org/10.1111/j.1600-0757.2005.00113.x.Google Scholar
  8. 8.
    Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59.  https://doi.org/10.1038/s41579-018-0089-x.CrossRefGoogle Scholar
  9. 9.
    Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6(6):1176–85.  https://doi.org/10.1038/ismej.2011.191.CrossRefGoogle Scholar
  10. 10.
    Li Y, He J, He Z, Zhou Y, Yuan M, Xu X, et al. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME J. 2014;8(9):1879–91.  https://doi.org/10.1038/ismej.2014.28.CrossRefGoogle Scholar
  11. 11.
    Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8(8):1659–72.  https://doi.org/10.1038/ismej.2014.23.CrossRefGoogle Scholar
  12. 12.
    Ai D, Huang R, Wen J, Li C, Zhu J, Xia LC. Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC Genomics. 2017;18(Suppl 1):1041.  https://doi.org/10.1186/s12864-016-3254-5.CrossRefGoogle Scholar
  13. 13.
    Park OJ, Yi H, Jeon JH, Kang SS, Koo KT, Kum KY, et al. Pyrosequencing analysis of subgingival microbiota in distinct periodontal conditions. J Dent Res. 2015;94(7):921–7.  https://doi.org/10.1177/0022034515583531.CrossRefGoogle Scholar
  14. 14.
    Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, et al. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J. 2013;7(5):1016–25.  https://doi.org/10.1038/ismej.2012.174.CrossRefGoogle Scholar
  15. 15.
    Duran-Pinedo AE, Yost S, Frias-Lopez J. Small RNA transcriptome of the oral microbiome during periodontitis progression. Appl Environ Microbiol. 2015;81(19):6688–99.  https://doi.org/10.1128/AEM.01782-15.CrossRefGoogle Scholar
  16. 16.
    Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, et al. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep. 2013;3:1843.  https://doi.org/10.1038/srep01843.CrossRefGoogle Scholar
  17. 17.
    Ganesan SM, Joshi V, Fellows M, Dabdoub SM, Nagaraja HN, O’Donnell B, et al. A tale of two risks: smoking, diabetes and the subgingival microbiome. ISME J. 2017;11(9):2075–89.  https://doi.org/10.1038/ismej.2017.73.CrossRefGoogle Scholar
  18. 18.
    Graves DT, Correa JD, Silva TA. The oral microbiota is modified by systemic diseases. J Dent Res. 2019;98(2):148–56.  https://doi.org/10.1177/0022034518805739.CrossRefGoogle Scholar
  19. 19.
    Beyer K, Zaura E, Brandt BW, Buijs MJ, Brun JG, Crielaard W, et al. Subgingival microbiome of rheumatoid arthritis patients in relation to their disease status and periodontal health. PLoS One. 2018;13(9):e0202278.  https://doi.org/10.1371/journal.pone.0202278.CrossRefGoogle Scholar
  20. 20.
    Nasidze I, Li J, Schroeder R, Creasey JL, Li M, Stoneking M. High diversity of the saliva microbiome in Batwa Pygmies. PLoS One. 2011;6(8):e23352.  https://doi.org/10.1371/journal.pone.0023352.CrossRefGoogle Scholar
  21. 21.
    Takeshita T, Matsuo K, Furuta M, Shibata Y, Fukami K, Shimazaki Y, et al. Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults. Sci Rep. 2014;4:6990.  https://doi.org/10.1038/srep06990.CrossRefGoogle Scholar
  22. 22.
    Asakawa M, Takeshita T, Furuta M, Kageyama S, Takeuchi K, Hata J, et al. Tongue microbiota and oral health status in community-dwelling elderly adults. mSphere. 2018;3:4.  https://doi.org/10.1128/msphere.00332-18.CrossRefGoogle Scholar
  23. 23.
    Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K, Shibata Y, et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama study. Sci Rep. 2016;6:22164.  https://doi.org/10.1038/srep22164.CrossRefGoogle Scholar
  24. 24.
    Simón-Soro A, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A. Microbial geography of the oral cavity. J Dent Res. 2013;92(7):616–21.  https://doi.org/10.1177/0022034513488119.CrossRefGoogle Scholar
  25. 25.
    Shiba T, Watanabe T, Kachi H, Koyanagi T, Maruyama N, Murase K, et al. Distinct interacting core taxa in co-occurrence networks enable discrimination of polymicrobial oral diseases with similar symptoms. Sci Rep. 2016;6:30997.  https://doi.org/10.1038/srep30997.CrossRefGoogle Scholar
  26. 26.
    Maruyama N, Maruyama F, Takeuchi Y, Aikawa C, Izumi Y, Nakagawa I. Intraindividual variation in core microbiota in peri-implantitis and periodontitis. Sci Rep. 2014;4:6602.  https://doi.org/10.1038/srep06602.CrossRefGoogle Scholar
  27. 27.
    Rosier BT, Marsh PD, Mira A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis. J Dent Res. 2018;97(4):371–80.  https://doi.org/10.1177/0022034517742139.CrossRefGoogle Scholar
  28. 28.
    Said HS, Suda W, Nakagome S, Chinen H, Oshima K, Kim S, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21(1):15–25.  https://doi.org/10.1093/dnares/dst037.CrossRefGoogle Scholar
  29. 29.
    Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, et al. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013;20(3):241–53.  https://doi.org/10.1093/dnares/dst006.CrossRefGoogle Scholar
  30. 30.
    Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.  https://doi.org/10.3389/fmicb.2014.00219.CrossRefGoogle Scholar
  31. 31.
    Milici M, Deng ZL, Tomasch J, Decelle J, Wos-Oxley ML, Wang H, et al. Co-occurrence analysis of microbial taxa in the atlantic ocean reveals high connectivity in the free-living bacterioplankton. Front Microbiol. 2016;7:649.  https://doi.org/10.3389/fmicb.2016.00649.Google Scholar
  32. 32.
    Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687.  https://doi.org/10.1371/journal.pcbi.1002687.CrossRefGoogle Scholar
  33. 33.
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.  https://doi.org/10.1093/bioinformatics/btq675.CrossRefGoogle Scholar
  34. 34.
    Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, et al. Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One. 2016;11(11):e0166104.  https://doi.org/10.1371/journal.pone.0166104.CrossRefGoogle Scholar
  35. 35.
    Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, et al. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res. 2014;93(9):846–58.  https://doi.org/10.1177/0022034514542468.CrossRefGoogle Scholar
  36. 36.
    Chen H, Liu Y, Zhang M, Wang G, Qi Z, Bridgewater L, et al. A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats. Sci Rep. 2015;5:9053.  https://doi.org/10.1038/srep09053.CrossRefGoogle Scholar
  37. 37.
    Armstrong CL, Miralda I, Neff AC, Tian S, Vashishta A, Perez L, et al. Filifactor alocis promotes neutrophil degranulation and chemotactic activity. Infect Immun. 2016;84(12):3423–33.  https://doi.org/10.1128/IAI.00496-16.CrossRefGoogle Scholar
  38. 38.
    Szafranski SP, Wos-Oxley ML, Vilchez-Vargas R, Jauregui R, Plumeier I, Klawonn F, et al. High-Resolution taxonomic profiling of the subgingival microbiome for biomarker discovery and periodontitis diagnosis. Appl Environ Microbiol. 2015;81(3):1047–58.  https://doi.org/10.1128/aem.03534-14.CrossRefGoogle Scholar
  39. 39.
    Kirst ME, Li EC, Alfant B, Chi YY, Walker C, Magnusson I, et al. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol. 2015;81(2):783–93.  https://doi.org/10.1128/aem.02712-14.CrossRefGoogle Scholar
  40. 40.
    Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol. 2012;27(6):409–19.  https://doi.org/10.1111/j.2041-1014.2012.00663.x.CrossRefGoogle Scholar
  41. 41.
    Duran-Pinedo AE, Paster B, Teles R, Frias-Lopez J. Correlation network analysis applied to complex biofilm communities. PLoS One. 2011;6(12):e28438.  https://doi.org/10.1371/journal.pone.0028438.CrossRefGoogle Scholar
  42. 42.
    Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44.CrossRefGoogle Scholar
  43. 43.
    Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe. 2011;10(5):497–506.  https://doi.org/10.1016/j.chom.2011.10.006.CrossRefGoogle Scholar
  44. 44.
    Sturgeon A, Stull JW, Costa MC, Weese JS. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet Microbiol. 2013;162(2–4):891–8.  https://doi.org/10.1016/j.vetmic.2012.11.018.CrossRefGoogle Scholar
  45. 45.
    Gerner-Smidt P, Keiser-Nielsen H, Dorsch M, Stackebrandt E, Ursing J, Blom J, et al. Lautropia mirabilis gen. nov., sp. nov., a gram-negative motile coccus with unusual morphology isolated from the human mouth. Microbiology. 1994;140(Pt 7):1787–97.  https://doi.org/10.1099/13500872-140-7-1787.CrossRefGoogle Scholar
  46. 46.
    Zhang SM, Tian F, Huang QF, Zhao YF, Guo XK, Zhang FQ. Bacterial diversity of subgingival plaque in 6 healthy Chinese individuals. Exp Ther Med. 2011;2(5):1023–9.  https://doi.org/10.3892/etm.2011.311.CrossRefGoogle Scholar
  47. 47.
    Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4.  https://doi.org/10.1128/mBio.01012-14.CrossRefGoogle Scholar
  48. 48.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–21.  https://doi.org/10.1038/nbt.2676.CrossRefGoogle Scholar
  49. 49.
    Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One. 2012;7(6):e37919.  https://doi.org/10.1371/journal.pone.0037919.CrossRefGoogle Scholar
  50. 50.
    Naqvi AZ, Buettner C, Phillips RS, Davis RB, Mukamal KJ. n-3 fatty acids and periodontitis in US adults. J Am Diet Assoc. 2010;110(11):1669–75.  https://doi.org/10.1016/j.jada.2010.08.009.CrossRefGoogle Scholar
  51. 51.
    Fischer CL, Walters KS, Drake DR, Dawson DV, Blanchette DR, Brogden KA, et al. Oral mucosal lipids are antibacterial against Porphyromonas gingivalis, induce ultrastructural damage, and alter bacterial lipid and protein compositions. Int J Oral Sci. 2013;5(3):130–40.  https://doi.org/10.1038/ijos.2013.28.CrossRefGoogle Scholar
  52. 52.
    Kim H. Glutamine as an immunonutrient. Yonsei Med J. 2011;52(6):892–7.  https://doi.org/10.3349/ymj.2011.52.6.892.CrossRefGoogle Scholar
  53. 53.
    Efron D, Barbul A. Role of arginine in immunonutrition. J Gastroenterol. 2000;35(Suppl 12):20–3.Google Scholar
  54. 54.
    Morita M, Wang HL. Relationship of sulcular sulfide level to severity of periodontal disease and BANA test. J Periodontol. 2001;72(1):74–8.  https://doi.org/10.1902/jop.2001.72.1.74.CrossRefGoogle Scholar
  55. 55.
    Waler SM. On the transformation of sulfur-containing amino acids and peptides to volatile sulfur compounds (VSC) in the human mouth. Eur J Oral Sci. 1997;105(5 Pt 2):534–7.CrossRefGoogle Scholar
  56. 56.
    Zhang JH, Dong Z, Chu L. Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res. 2010;45(1):71–8.  https://doi.org/10.1111/j.1600-0765.2009.01202.x.CrossRefGoogle Scholar
  57. 57.
    Ikeda E, Shiba T, Ikeda Y, Suda W, Nakasato A, Takeuchi Y, et al. Deep sequencing reveals specific bacterial signatures in the subgingival microbiota of healthy subjects. Clin Oral Investig. 2019.  https://doi.org/10.1007/s00784-019-02805-3.Google Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  • Eri Ikeda
    • 1
  • Takahiko Shiba
    • 1
  • Yuichi Ikeda
    • 1
  • Wataru Suda
    • 2
    • 3
  • Akinori Nakasato
    • 1
  • Yasuo Takeuchi
    • 1
    Email author
  • Miyuki Azuma
    • 4
  • Masahira Hattori
    • 2
    • 5
  • Yuichi Izumi
    • 1
    • 6
  1. 1.Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyoJapan
  2. 2.RIKEN Center for Integrative Medical SciencesYokohamaJapan
  3. 3.Department of Microbiology and ImmunologyKeio University School of MedicineShinjukuJapan
  4. 4.Department of Molecular Immunology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityBunkyoJapan
  5. 5.Faculty of Science and Engineering, Graduate School of Advanced Science and EngineeringWaseda UniversityShinjukuJapan
  6. 6.Oral Care Perio Center, Southern TOHOKU General HospitalSouthern TOHOKU Research Institute for NeuroscienceKoriyamaJapan

Personalised recommendations