Advertisement

Odontology

pp 1–6 | Cite as

Clinical factors affecting the translucency of monolithic Y-TZP ceramics

  • Gürel PekkanEmail author
  • Mutlu Özcan
  • Meryem Gülce Subaşı
Review Article
  • 58 Downloads

Abstract

The use of monolithic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics in aesthetically critical regions is questionable because of the insufficient translucency and opacity of the restorations. Intrinsic (manufacturing process) and extrinsic factors (laboratory procedures and clinical factors) can affect the translucency of monolithic zirconia. In this narrative review, the clinical factors (thickness, cementation type, colour of the monolithic zirconia, surface finishing methods and wear, dental background, cement colour, low temperature degradation) affecting the translucency of monolithic Y-TZP ceramics were reported.

Keywords

Zirconia Monolithic Translucency Colour Wear 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93:1235–42.CrossRefGoogle Scholar
  2. 2.
    Ghodsi S, Jafarian Z. A review on translucent zirconia. Eur J Prosthodont Restor Dent. 2018;26:62–74.Google Scholar
  3. 3.
    Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014;30:e419–24.CrossRefGoogle Scholar
  4. 4.
    Griffin JD Jr. Tooth in a bag: same-day monolithic zirconia crown. Dent Today. 2013;32(124):126–31.Google Scholar
  5. 5.
    Sulaiman TA, Abdulmajeed AA, Donovan TE, Valittu PK, Närhi TO, Lassila LV. The effect of staining and vacuum sintering on optical and mechanical properties of partially and fully stabilized monolithic zirconia. Dent Mater J. 2015;34:605–10.CrossRefGoogle Scholar
  6. 6.
    Sulaiman TA, Abdulmajeed AA, Shahramian K, Lassila L. Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia. J Prosthet Dent. 2017;118:216–20.CrossRefGoogle Scholar
  7. 7.
    Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013;44:557–66.Google Scholar
  8. 8.
    Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study. J Prosthet Dent. 2014;112:1141–50.CrossRefGoogle Scholar
  9. 9.
    Stawarcyzk B, Özcan M, Schmutz F, Trottmann A, Roos M, Hämmerle CH. Two-body wear of monolithic, veneered and glazed zirconia and their corresponding enamel antagonists. Acta Odontol Scand. 2013;71:102–12.CrossRefGoogle Scholar
  10. 10.
    Harada K, Raigrodski AJ, Chung KH, Flinn BD, Dogan S, Mancl LA. A comparative evaluation of the translucency of zirconias and lithium disilicate for monolithic restorations. J Prosthet Dent. 2016;116:257–63.CrossRefGoogle Scholar
  11. 11.
    Tinschert J, Natt G, Hassenpflug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent. 2004;7:25–45.Google Scholar
  12. 12.
    Hmaidouch R, Müller WD, Lauer HC, Weigl P. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing. Int J Oral Sci. 2014;61:241–6.CrossRefGoogle Scholar
  13. 13.
    O’Keefe KL, Pease PL, Herrin HK. Variables affecting the spectral transmittance of light through porcelain veneer samples. J Prosthet Dent. 1991;66:434–8.CrossRefGoogle Scholar
  14. 14.
    Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Valittu PK, Närhi TO, Lassila LV. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31:1180–7.CrossRefGoogle Scholar
  15. 15.
    Juntavee N, Attashu S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J Clin Exp Dent. 2018;10:e794–804.Google Scholar
  16. 16.
    Shahmiri R, Standard OC, Hart JN, Sorrell CC. Optical properties of zirconia ceramics for esthetic dental restorations: a systematic review. J Prosthet Dent. 2018;119:36–46.CrossRefGoogle Scholar
  17. 17.
    Alp G, Subaşı MG, Seghi RR, Johnston WM, Yilmaz B. Effect of shading technique and thickness on color stability and translucency of new generation translucent zirconia. J Dent. 2018;73:19–23.CrossRefGoogle Scholar
  18. 18.
    Ilie N, Stawarczyk B. Quantification of the amount of blue light passing through monolithic zirconia with respect to thickness and polymerization conditions. J Prosthet Dent. 2015;113:114–21.CrossRefGoogle Scholar
  19. 19.
    Kim HK, Kim SH, Lee JB, Han JS, Yeo IS, Ha SR. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J Adv Prosthodont. 2016;8:37–42.CrossRefGoogle Scholar
  20. 20.
    Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effect of thickness on optical properties of monolithic CAD-CAM ceramics. J Dent. 2018;71:38–42.CrossRefGoogle Scholar
  21. 21.
    Wang F, Takahashi H, Iwasaki N. Translucency of dental ceramics with different thicknesses. J Prosthet Dent. 2013;110:14–20.CrossRefGoogle Scholar
  22. 22.
    Malkondu O, Tinastepe N, Kazazoglu E. Influence of type of cement on the color and translucency of monolithic zirconia. J Prosthet Dent. 2016;116:902–8.CrossRefGoogle Scholar
  23. 23.
    Kim HK, Kim SH. Effect of the number of coloring liquid applications on the optical properties of monolithic zirconia. Dent Mater. 2014;30:e229–37.CrossRefGoogle Scholar
  24. 24.
    Kurtulmus-Yilmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont. 2014;6:415–22.CrossRefGoogle Scholar
  25. 25.
    Sen N, Sermet IB, Cinar S. Effect of coloring and sintering on the translucency and biaxial strength of monolithic zirconia. J Prosthet Dent. 2018;119:308.CrossRefGoogle Scholar
  26. 26.
    Shah K, Holloway JA, Denry IL. Effect of coloring with various metal oxides on the microstructure, color, and flexural strength of 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2008;87:329–37.CrossRefGoogle Scholar
  27. 27.
    Subaşı MG, Alp G, Johnston WM, Yilmaz B. Effects of fabrication and shading technique on the color and translucency of new-generation translucent zirconia after coffee thermocycling. J Prosthet Dent. 2018;120:603–8.CrossRefGoogle Scholar
  28. 28.
    Ueda K, Güth JF, Erdelt K, Stimmelmayr M, Kappert H, Beuer F. Light transmittance by a multi-coloured zirconia material. Dent Mater J. 2015;34:310–4.CrossRefGoogle Scholar
  29. 29.
    Akar GC, Pekkan G, Cal E, Eskitaşçıoğlu G, Özcan M. Effects of surface-finishing protocols on the roughness, color change, and translucency of different ceramic systems. J Prosthet Dent. 2014;112:314–21.CrossRefGoogle Scholar
  30. 30.
    Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115:773–9.CrossRefGoogle Scholar
  31. 31.
    Capa N, Celebi C, Casur A, Tuncel I, Usumez A. The translucency effect of different colored resin cements used with zirconia core and titanium abutments. Niger J Clin Pract. 2017;20:1517–21.Google Scholar
  32. 32.
    Carames J, Tovar Suinaga L, Yu YC, Pérez A, Kang M. Clinical advantages and limitations of monolithic zirconia restorations full arch implant supported reconstruction: case series. Int J Dent. 2015;2015:392496.CrossRefGoogle Scholar
  33. 33.
    Dede DÖ, Armağanci A, Ceylan G, Celik E, Cankaya S, Yilmaz B. Influence of implant abutment material on the color of different ceramic crown systems. J Prosthet Dent. 2016;116:764–9.CrossRefGoogle Scholar
  34. 34.
    Rosentritt M, Rembs A, Behr M, Hahnel S, Preis V. In vitro performance of implant-supported monolithic zirconia crowns: Influence of patient-specific tooth-coloured abutments with titanium adhesive bases. J Dent. 2015;43:839–45.CrossRefGoogle Scholar
  35. 35.
    Chang J, Da Silva JD, Sakai M, Kristiansen J, Ishikawa-Nagai S. The optical effect of composite luting cement on all ceramic crowns. J Dent. 2009;37:937–43.CrossRefGoogle Scholar
  36. 36.
    Tabatabaian F, Shabani S, Namdari M, Sadeghpour K. Masking ability of a zirconia ceramic on composite resin substrate shades. Dent Res J (Isfahan). 2017;14:389–94.CrossRefGoogle Scholar
  37. 37.
    Tabatabaian F, Taghizade F, Namdari M. Effect of coping thickness and background type on the masking ability of a zirconia ceramic. J Prosthet Dent. 2018;119:159–65.CrossRefGoogle Scholar
  38. 38.
    Tabatabaian F. Color aspect of monolithic zirconia restorations: a review of the literature. J Prosthodont. 2019;28:276–87.CrossRefGoogle Scholar
  39. 39.
    Tabatabaian F, Dalirani S, Namdari M. Effect of thickness of zirconia ceramic on its masking ability: an in vitro study. J Prosthodont. 2017.  https://doi.org/10.1111/jopr.12625.Google Scholar
  40. 40.
    Tabatabaian F, Motamedi E, Sahabi M, Torabzadeh H, Namdari M. Effect of thickness of monolithic zirconia ceramic on final color. J Prosthet Dent. 2018;120:257–62.CrossRefGoogle Scholar
  41. 41.
    Alghazzawi TF. The effect of extended aging on the optical properties of different zirconia materials. J Prosthodont Res. 2017;61:305–14.CrossRefGoogle Scholar
  42. 42.
    Camposilvan E, Leone R, Gremillard L, Sorrentino R, Zarone F, Ferrari M, Chevalier J. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent Mater. 2018;34:879–90.CrossRefGoogle Scholar
  43. 43.
    Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015;1:86–92.CrossRefGoogle Scholar
  44. 44.
    Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monolithic zirconia ceramics. J Prosthet Dent. 2019;121:676–82.CrossRefGoogle Scholar
  45. 45.
    Putra A, Chung KH, Flinn BD, Kuykendall T, Zheng C, Harada K, Raigrodski AJ. Effect of hydrothermal treatment on light transmission of translucent zirconias. J Prosthet Dent. 2017;118:422–9.CrossRefGoogle Scholar
  46. 46.
    Walczak K, Meißner H, Range U, Sakkas A, Boening K, Wieckiewicz M, Konstantinidis I. Translucency of zirconia ceramics before and after artificial aging. J Prosthodont. 2019;28:e319–24.CrossRefGoogle Scholar
  47. 47.
    Ilie N, Stawarczyk B. Quantification of the amount of light passing through zirconia: the effect of material shade, thickness, and curing conditions. J Dent. 2014;42:684–90.CrossRefGoogle Scholar
  48. 48.
    Erdelt K, Pinheiro Dias Engler ML, Beuer F, Güth JF, Liebermann A, Schweiger J. Computable translucency as a function of thickness in a multi-layered zirconia. J Prosthet Dent. 2019;121:683–9.CrossRefGoogle Scholar
  49. 49.
    Weigl P, Sander A, Wu Y, Felber R, Lauer HC, Rosentritt M. In-vitro performance and fracture strength of thin monolithic zirconia crowns. J Adv Prosthodont. 2018;10:79–84.CrossRefGoogle Scholar
  50. 50.
    Gu XH, Kern M. Marginal discrepancies and leakage of all-ceramic crowns: influence of luting agents and aging conditions. Int J Prosthodont. 2003;16:109–16.Google Scholar
  51. 51.
    Aboushelib MN, Dozic A, Liem JK. Influence of framework color and layering technique on the final color of zirconia veneered restorations. Quintessence Int. 2010;41:e84–9.Google Scholar
  52. 52.
    Nam JY, Park MG. Effects of aqueous and acid-based coloring liquids on the hardness of zirconia restorations. J Prosthet Dent. 2017;117:662–8.CrossRefGoogle Scholar
  53. 53.
    Orhun E. The effect of coloring liquid dipping time on the fracture load and color of zirconia ceramics. J Adv Prosthodont. 2017;9:67–73.CrossRefGoogle Scholar
  54. 54.
    Askari E, Flores P, Silva F. A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics. J Mech Behav Biomed Mater. 2018;77:461–9.CrossRefGoogle Scholar
  55. 55.
    Silva LHD, Lima E, Miranda RBP, Favero SS, Lohbauer U, Cesar PF. Dental ceramics: a review of new materials and processing methods. Braz Oral Res. 2017;31:e58.Google Scholar
  56. 56.
    Spyropoulou PE, Giroux EC, Razzoog ME, Duff RE. Translucency of shaded zirconia core material. J Prosthet Dent. 2011;105:304–7.CrossRefGoogle Scholar
  57. 57.
    Janyavula S, Lawson N, Cakir D, Beck P, Ramp LC, Burgess JO. The wear of polished and glazed zirconia against enamel. J Prosthet Dent. 2013;109:22–9.CrossRefGoogle Scholar
  58. 58.
    Kontos L, Schille C, Schweizer E, Geis-Gerstorfer J. Influence of surface treatment on the wear of solid zirconia. Acta Odontol Scand. 2013;71:482–7.CrossRefGoogle Scholar
  59. 59.
    Passos SP, Torrealba Y, Major P, Linke B, Flores-Mir C, Nychka JA. In vitro wear behavior of zirconia opposing enamel: a systematic review. J Prosthodont. 2014;23:593–601.CrossRefGoogle Scholar
  60. 60.
    Rupawala A, Musani SI, Madanshetty P, Dugal R, Shah UD, Sheth EJ. A study on the wear of enamel caused by monolithic zirconia and the subsequent phase transformation compared to two other ceramic systems. J Indian Prosthodont Soc. 2017;17:8–14.Google Scholar
  61. 61.
    Zurek AD, Alfaro MF, Wee AG, Yuan JC, Barao VA, Mathew MT, Sukotjo C. Wear characteristics and volume loss of CAD/CAM ceramic materials. J Prosthodont. 2019;28:e510–8.CrossRefGoogle Scholar
  62. 62.
    Mohammadi-Bassir M, Babasafari M, Rezvani MB, Jamshidian M. Effect of coarse grinding, overglazing, and 2 polishing systems on the flexural strength, surface roughness, and phase transformation of yttrium-stabilized tetragonal zirconia. J Prosthet Dent. 2017;118:658–65.Google Scholar
  63. 63.
    Ozer F, Naden A, Turp V, Mante F, Sen D, Blatz MB. Effect of thickness and surface modifications on flexural strength of monolithic zirconia. J Prosthet Dent. 2018;119:987–93.CrossRefGoogle Scholar
  64. 64.
    Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials. 2006;27:2186–92.CrossRefGoogle Scholar
  65. 65.
    Denry IL, Peacock JJ, Holloway JA. Effect of heat treatment after accelerated aging on phase transformation in 3Y-TZP. J Biomed Mater Res B Appl Biomater. 2010;93:236–43.Google Scholar
  66. 66.
    Pop-Ciutrila IS, Ghinea R, Colosi HA, Dudea D. Dentin translucency and color evaluation in human incisors, canines, and molars. J Prosthet Dent. 2016;115:475–81.CrossRefGoogle Scholar
  67. 67.
    Church TD, Jessup JP, Guillory VL, Vandewalle KS. Translucency and strength of high-translucency monolithic zirconium oxide materials. Gen Dent. 2017;65:48–52.Google Scholar
  68. 68.
    Jirajariyavej B, Wanapirom P, Anunmana C. Influence of implant abutment material and ceramic thickness on optical properties. J Prosthet Dent. 2018;119:819–25.CrossRefGoogle Scholar
  69. 69.
    Alqahtani MQ, Aljurais RM, Alshaafi MM. The effects of different shades of resin luting cement on the color of ceramic veneers. Dent Mater J. 2012;31:354–61.CrossRefGoogle Scholar
  70. 70.
    Calgaro PA, Furuse AY, Correr GM, Ornaghi BP, Gonzaga CC. Post-cementation colorimetric evaluation of the interaction between the thickness of ceramic veneers and the shade of resin cement. Am J Dent. 2014;27:191–4.Google Scholar
  71. 71.
    Jankar AS, Kale Y, Pustake S, Bijjaragi S, Pustake B. Spectrophotometric study of the effect of luting agents on the resultant shade of ceramic veneers: an invitro study. J Clin Diagn Res. 2015;9:ZC56–60.Google Scholar
  72. 72.
    Dede DÖ, Armaganci A, Ceylan G, Cankaya S, Celik E. Influence of abutment material and luting cements color on the final color of all ceramics. Acta Odontol Scand. 2013;71:1570–8.CrossRefGoogle Scholar
  73. 73.
    Lughi V, Sergo V. Low temperature degradation-aging-of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.CrossRefGoogle Scholar
  74. 74.
    Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008;24:289–98.CrossRefGoogle Scholar
  75. 75.
    Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, Örtengren U. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater. 2015;47:49–56.CrossRefGoogle Scholar
  76. 76.
    Balzaretti NM, da Jornada JA. Pressure dependence of the refractive index of monoclinic and yttria-stabilized cubic zirconia. Phys Rev B: Condens Matter. 1995;52:9266–9.CrossRefGoogle Scholar
  77. 77.
    French RH, Glass SJ, Ohuchi FS, Xu Y, Ching WY. Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B Condens Matter. 1994;49:5133–42.CrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  1. 1.Department of Prosthodontics, Faculty of DentistryTekirdag Namik Kemal UniversityTekirdagTurkey
  2. 2.Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials ScienceUniversity of ZürichZurichSwitzerland
  3. 3.Department of Prosthodontics, Faculty of DentistryKutahya Health Sciences UniversityKutahyaTurkey

Personalised recommendations