Advertisement

Odontology

, Volume 107, Issue 4, pp 473–481 | Cite as

Evaluation of the usage-induced degradation of Genius and Reciproc nickel–titanium reciprocating instruments

  • Luigi GeneraliEmail author
  • Alessia Borghi
  • Luca Lusvarghi
  • Giovanni Bolelli
  • Paolo Veronesi
  • Andrea Vecchi
  • Ugo Consolo
  • Carlo Becce
  • Carlo Bertoldi
  • Paolo Sassatelli
Original Article

Abstract

The aim of this study was to characterize the main features and the usage-induced degradation of the Genius file after four severely curved root canal instrumentations and to compare their properties to the Reciproc files. Brand new and ex vivo used files were analysed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC), X-ray diffraction (XRD), optical metallography, and nano-indentation to disclose their morphological, chemical, mechanical, thermal, and phase composition features. Nano-indentation data were statistically analysed using the Student’s t test for normal distribution or the Kolmogorov–Smirnov test for not-normal distributions. SEM analysis showed the presence of micro-cracks near the tip on both files after ex vivo usage test. EDS analysis confirmed that both files are manufactured from an almost equiatomic NiTi alloy. DSC analysis revealed that the transition temperature of the Genius is below 20 °C, while that of the Reciproc is above 20 °C. XRD analysis of Genius files identified cubic B2 austenite with minor peaks of residual monoclinic B19 martensite, while the contemporaneous presence of martensite, austenite and hexagonal R-phase was observed in the Reciproc files. Significant differences in nanohardness and modulus of elasticity (P < .05) were observed in both Genius and Reciproc files before and after use. The collected results showed that both instruments can be safely used as single-use files.

Keywords

Differential scanning calorimetry Genius files Metallurgical characterization Reciproc Reciprocating motion 

Notes

Acknowledgements

The authors would like to thank Professor Francesco Cavani for assistance in statistical analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickel–titanium instruments. J Endod. 2013;39:163–72.CrossRefGoogle Scholar
  2. 2.
    Walia H, Brantley WA, Gerstein H. An initial Investigation of the bending and torsional properties of nitinol root canal files. J Endod. 1988;14:346–51.CrossRefGoogle Scholar
  3. 3.
    Pedullà E, Benites A, La Rosa GM, Plotino G, Grande NM, Rapisarda E, Generali L. Cyclic fatigue resistance of heat-treated nikel–titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Endod. 2018;44:648–53.CrossRefGoogle Scholar
  4. 4.
    Schäfer E. Root canal instruments for manual use: a review. Endod Dental Traumatol. 1997;13:51–64.CrossRefGoogle Scholar
  5. 5.
    Schäfer E, Erler M, Dammaschke T. Comparative study on the shaping ability and cleaning efficiency of rotary Mtwo instruments. Part 1. Shaping ability in simulated curved canals. Int Endod J. 2006;39:196–202.CrossRefGoogle Scholar
  6. 6.
    Setzer FC, Kwon TK, Karabucak B. Comparison of apical transportation between two rotary file systems and two hybrid rotary instrumentation sequences. J Endod. 2010;36:1226–9.CrossRefGoogle Scholar
  7. 7.
    Shim KS, Oh S, Kum K, Kim YC, Jee KK, Chang SW. Mechanical and metallurgical properties of various nickel–titanium rotary instruments. Biomed Res Int. 2017;2017:4528601.CrossRefGoogle Scholar
  8. 8.
    Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.CrossRefGoogle Scholar
  9. 9.
    Jamleh A, Kobayashi C, Yahata Y, Ebihara A, Suda H. Deflecting load of nickel titanium rotary instruments during cyclic fatigue. Dent Mater J. 2012;31:389–93.CrossRefGoogle Scholar
  10. 10.
    Cheung GSP, Peng B, Bian Z, Shen Y, Darvell BW. Defects in ProTaper S1 instruments after clinical use: fractographic examination. Int Endod J. 2005;38:802–9.CrossRefGoogle Scholar
  11. 11.
    Kramkowski TR, Bahcall J. An in vitro comparison of torsional stress and cyclic fatigue resistance of ProFile GT and ProFile GT series X rotary nickel–titanium files. J Endod. 2009;35:404–7.CrossRefGoogle Scholar
  12. 12.
    Blum JY, Machtou P, Ruddle C, Micallef JP. Analysis of mechanical preparations in extracted teeth using ProTaper rotary instruments: value of the safety quotient. J Endod. 2003;29:567–75.CrossRefGoogle Scholar
  13. 13.
    Generali L, Righi E, Todesca MV, Consolo U. Canal shaping with WaveOne reciprocating files: influence of operator experience on instrument breakage and canal preparation time. Odontology. 2014;102:217–22.CrossRefGoogle Scholar
  14. 14.
    Martín B, Zelada G, Varela P, Bahillo JG, Magán F, Ahn S, Rodríguez C. Factors influencing the fracture of nickel–titanium rotary instruments. Int Endod J. 2003;36:262–6.CrossRefGoogle Scholar
  15. 15.
    Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Mechanical properties of controlled memory and superelastic nickel–titanium wires used in the manufacture of rotary endodontic instruments. J Endod. 2012;38:1535–40.CrossRefGoogle Scholar
  16. 16.
    Panitvisai P, Parunnit P, Sathorn C, Messer HH. Impact of a retained instrument on treatment outcome: a systematic review and meta-analysis. J Endod. 2010;36:775–80.CrossRefGoogle Scholar
  17. 17.
    McGuigan MB, Louca C, Duncan HF. The impact of fractured endodontic instruments on treatment outcome. Br Dent J. 2013;214:285–9.CrossRefGoogle Scholar
  18. 18.
    Kiefner P, Ban M, De-Deus G. Is the reciprocating movement per se able to improve the cyclic fatigue resistance of instruments? Int Endod J. 2014;47:430–6.CrossRefGoogle Scholar
  19. 19.
    De-Deus G, Moreira EJ, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010;43:1063–8.CrossRefGoogle Scholar
  20. 20.
    van der Vyver PJ, Jonker C. Reciprocating instruments in endodontics: a review of the literature. SADJ. 2014;64:404–9.Google Scholar
  21. 21.
    De-Deus G, Silva EJ, Vieira VT, Belladonna FG, Elias CN, Plotino G, Grande NM. Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the Reciproc files. J Endod. 2017;43:462–6.CrossRefGoogle Scholar
  22. 22.
    Ultradent. Brochure:Endo-Eze™ Genius® endodontic system. Where safety meets efficiency. 2017. https://www.ultradent.com/SiteCollectionImages/Multi-Media-Tab/Brochures/Endodontics/Documents/Europe/UPP610-EU_Genius Family Brochure.pdf. Accessed 12 Sept 2018.
  23. 23.
    Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, Gandolfi MG, Giorgini L, Prati C. Structural analysis of HyFlex EDM instruments. Int Endod J. 2017;50:303–13.CrossRefGoogle Scholar
  24. 24.
    Özyürek T, Gündogår M, Yilmaz K, Uslu G. Bending resistance and cyclic fatigue life of Reciproc Blue, WaveOne Gold, and Genius files in a double (S-shaped) curved canal. J Dent Res Dent Clin Dent Prospects. 2017;11:241–6.Google Scholar
  25. 25.
    Drukteinis S, Peciuliene V, Dummer PMH, Hupp J. Shaping ability of BioRace, ProTaper NEXT and Genius instruments in curved canals of mandibular molars: a MicroCT study. Int Endod J. 2018.  https://doi.org/10.1111/iej.12961 (Epub ahead of print).Google Scholar
  26. 26.
    Pirani C, Iacono F, Generali L, Sassatelli P, Nucci C, Lusvarghi L, Gandolfi MG, Prati C. HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int Endod J. 2016;49:483–93.CrossRefGoogle Scholar
  27. 27.
    Hou X, Yahata Y, Hayashi Y, Ebihara A, Hanawa T, Suda H. Phase transformation behaviour and bending property of twisted nickel–titanium endodontic instruments. Int Endod J. 2011;44:253–8.CrossRefGoogle Scholar
  28. 28.
    ISO 14577-1. Metallic materials—instrumented indentation tests for hardness and materials parameters—Part 1: test method. 2015.Google Scholar
  29. 29.
    Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.CrossRefGoogle Scholar
  30. 30.
    Wayman CM, Duerig TW. An introduction to martensite and shape memory. In: Duerig TW, Melton KN, Stöckel D, Wayman CM, editors. Engineering aspects of shape memory alloys. 1st ed. London: Buttheworth-Heinemann; 1990. pp. 3–9.CrossRefGoogle Scholar
  31. 31.
    Arslan H, Doğanay E, Alsancak M, Çapar ID, Karataş E, Gündüz HA. Comparison of apically extruded debris after root canal instrumentation using Reciproc® instruments with various kinematics. Int Endod J. 2016;49:307–10.CrossRefGoogle Scholar
  32. 32.
    Bürklein S, Hinschitza K, Dammaschke T, Schäfer E. Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: Reciproc and WaveOne versus Mtwo and ProTaper. Int Endod J. 2012;45:449–61.CrossRefGoogle Scholar
  33. 33.
    Pereira ES, Peixoto IF, Viana AC, Oliveira II, Gonzales BM, Buono VT, Bahia MG. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments. Int Endod J. 2012;45:469–74.CrossRefGoogle Scholar
  34. 34.
    Kosti E, Zinelis S, Molyvdas I, Lambrianidis T. Effect of root canal curvature on the failure incidence of ProFile royary Ni–Ti endodontic instruments. Int Endod J. 2011;44:917–25.CrossRefGoogle Scholar
  35. 35.
    Plotino G, Grande NM, Porciani PF. Deformation and fracture incidence of Reciproc instruments: a clinical evaluation. Int Endod J. 2015;48:199–205.CrossRefGoogle Scholar
  36. 36.
    Gu Y, Kum KY, Perinpanayagam H, Kim C, Kum DJ, Lim SM, Chang SW, Baek SH, Zhu Q, Yoo YJ. Various heat-treated nickel–titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci. 2017;12:14–20.CrossRefGoogle Scholar
  37. 37.
    Iacono F, Pirani C, Generali L, Sassatelli P, Nucci C, Gandolfi MG, Prati C. Wear analysis and cyclic fatigue resistance of electro discharge machined NiTi rotary instruments. G It Endo. 2016;30:64–8.CrossRefGoogle Scholar
  38. 38.
    Sangid MD. The physics of fatigue crack initiation. Int J Fatigue. 2013;57:58–72.CrossRefGoogle Scholar
  39. 39.
    Brantley WA, Svec TA, Iijima M, Powers JM, Grentzer TH. Differential scanning calorimetric studies of nickel titanium rotary endodontic instruments. J Endod. 2002;28:567–72.CrossRefGoogle Scholar
  40. 40.
    Shagmir H, Nili-Ahmadabadi M, Huang Y, Langdon TG. Evolution of microstructure and hardness in NiTi shape memory alloys processed by high-pressure torsion. J Mater Sci. 2014;49:2998–3009.CrossRefGoogle Scholar
  41. 41.
    Pirani C, Paolucci A, Ruggeri O, Bossù M, Polimeni A, Gatto MR, Gandolfi MG, Prati C. Wear and metallographic analysis of WaveOne and reciproc NiTi instruments before and after three uses in root canals. Scanning. 2014;36:517–25.CrossRefGoogle Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  • Luigi Generali
    • 1
    Email author
  • Alessia Borghi
    • 1
  • Luca Lusvarghi
    • 2
  • Giovanni Bolelli
    • 2
  • Paolo Veronesi
    • 2
  • Andrea Vecchi
    • 3
  • Ugo Consolo
    • 1
  • Carlo Becce
    • 4
  • Carlo Bertoldi
    • 1
  • Paolo Sassatelli
    • 2
  1. 1.Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO)University of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Engineering Enzo Ferrari (DIEF)University of Modena and Reggio EmiliaModenaItaly
  3. 3.NCS-LabModenaItaly
  4. 4.Private PracticeSavonaItaly

Personalised recommendations