Advertisement

Odontology

, Volume 107, Issue 4, pp 449–456 | Cite as

Evaluation of milk fat globule-epidermal growth factor–factor VIII and IL-1β levels in gingival crevicular fluid and saliva in periodontal disease and health

  • Mustafa Cihan YavuzEmail author
  • Tuğba Pekbağriyanik
  • Mehmet Sağlam
  • Serhat Köseoğlu
Original Article
  • 122 Downloads

Abstract

The aim of this study is to determine the levels of MFG-E8 and interleukin (IL)-1β in saliva and gingival crevicular fluid (GCF) associated with periodontal health and disease. Whole saliva and GCF samples were obtained from systemically healthy participants who were either periodontally healthy (n = 24) or suffered from gingivitis (n = 25) or chronic periodontitis (n = 25). Full-mouth clinical periodontal measurements, including bleeding on probing, probing depth, gingival index, plaque index, and clinical attachment level were also recorded. Enzyme-linked immunosorbent assay was used to estimate MFG-E8 and IL-1β levels in the samples. Analysis of variance, Kruskal–Wallis tests, and Pearson correlation tests were used to analyse the data statistically. The total level of MFG-E8 in GCF was significantly higher in the healthy group than in the other two groups (P = 0.01). Salivary MFG-E8 levels did not differ significantly among the groups. There were negative correlations between the level of MFG-E8 in GCF and probing depth (P = 0.03), bleeding on probing (P = 0.001), plaque index (P = 0.003), and gingival index (P = 0.003). The total level of IL-1β in GCF was significantly lower in the healthy group than in the groups with gingivitis and chronic periodontitis (P < 0.001). Salivary IL-1β levels showed significant differences across all three groups (P < 0.001). The level of MFG-E8 in GCF was higher in the healthy group than in the periodontal disease groups. Furthermore, there was no difference between gingivitis and periodontitis groups. The relationship between MFG-E8 and periodontal status should be further investigated.

Keywords

Periodontitis Saliva Gingival crevicular fluid IL-1β MFG-E8 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Van Dyke TE. Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med. 2017;58(Supplement C):21–36.  https://doi.org/10.1016/j.mam.2017.04.006.CrossRefGoogle Scholar
  2. 2.
    Naohito A, Tetsuya I, Sachiyo O, Yumiko Y, Mizue N, Takahiro A, Ryo N, Tsukasa M. Stage specific expression of milk fat globule membrane glycoproteins in mouse mammary gland: comparison of MFG-E8, butyrophilin, and CD36 with a major milk protein, β-casein. Biochim Biophys Acta Gen Subj. 1997;1334(2):182–90.  https://doi.org/10.1016/S0304-4165(96)00091-8.Google Scholar
  3. 3.
    Watanabe T, Totsuka R, Miyatani S, Kurata S-i, Sato S, Katoh I, Kobayashi S, Ikawa Y. Production of the long and short forms of MFG-E8 by epidermal keratinocytes. Cell Tissue Res. 2005;321(2):185–93.  https://doi.org/10.1007/s00441-005-1148-y.CrossRefGoogle Scholar
  4. 4.
    Miyasaka K, Hanayama R, Tanaka M, Nagata S. Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells. Eur J Immunol. 2004;34(5):1414–22.  https://doi.org/10.1002/eji.200424930.CrossRefGoogle Scholar
  5. 5.
    Uchiyama A, Yamada K, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O, Motegi S. MFG-E8 regulates angiogenesis in cutaneous wound healing. Am J Pathol. 2014;184(7):1981–90.  https://doi.org/10.1016/j.ajpath.2014.03.017.CrossRefGoogle Scholar
  6. 6.
    Ait-Oufella H, Kinugawa K, Zoll J, Simon T, Boddaert J, Heeneman S, Blanc-Brude O, Barateau V, Potteaux S, Merval R, Esposito B, Teissier E, Daemen MJ, Lesèche G, Boulanger C, Tedgui A, Mallat Z. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007;115(16):2168–77.  https://doi.org/10.1161/CIRCULATIONAHA.106.662080.CrossRefGoogle Scholar
  7. 7.
    Abe T, Shin J, Hosur K, Udey MC, Chavakis T, Hajishengallis G. Regulation of osteoclast homeostasis and inflammatory bone loss by MFG-E8. J Immunol. 2014;193(3):1383–91.  https://doi.org/10.4049/jimmunol.1400970.CrossRefGoogle Scholar
  8. 8.
    Motegi S, Leitner WW, Lu M, Tada Y, Sardy M, Wu C, Chavakis T, Udey MC. Pericyte-derived MFG-E8 regulates pathologic angiogenesis. Arter Thromb Vasc Biol. 2011;31(9):2024–34.  https://doi.org/10.1161/ATVBAHA.111.232587.CrossRefGoogle Scholar
  9. 9.
    Aziz MM, Ishihara S, Mishima Y, Oshima N, Moriyama I, Yuki T, Kadowaki Y, Rumi MA, Amano Y, Kinoshita Y. MFG-E8 attenuates intestinal inflammation in murine experimental colitis by modulating osteopontin-dependent alphavbeta3 integrin signaling. J Immunol. 2009;182(11):7222–32.  https://doi.org/10.4049/jimmunol.0803711.CrossRefGoogle Scholar
  10. 10.
    Deroide N, Li X, Lerouet D, Van Vre E, Baker L, Harrison J, Poittevin M, Masters L, Nih L, Margaill I, Iwakura Y, Ryffel B, Pocard M, Tedgui A, Kubis N, Mallat Z. MFGE8 inhibits inflammasome-induced IL-1beta production and limits postischemic cerebral injury. J Clin Invest. 2013;123(3):1176–81.  https://doi.org/10.1172/JCI65167.CrossRefGoogle Scholar
  11. 11.
    Silvestre JS, Thery C, Hamard G, Boddaert J, Aguilar B, Delcayre A, Houbron C, Tamarat R, Blanc-Brude O, Heeneman S, Clergue M, Duriez M, Merval R, Lévy B, Tedgui A, Amigorena S, Mallat Z. Lactadherin promotes VEGF-dependent neovascularization. Nat Med. 2005;11(5):499–506.  https://doi.org/10.1038/nm1233.CrossRefGoogle Scholar
  12. 12.
    Albus E, Sinningen K, Winzer M, Thiele S, Baschant U, Hannemann A, Fantana J, Tausche A, Wallaschofski H, Nauck M, Völzke H, Grossklaus S, Chavakis T, Udey MC, Hofbauer LC, Raune M. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a novel anti-inflammatory factor in rheumatoid arthritis in mice and humans. J Bone Miner Res. 2015.  https://doi.org/10.1002/jbmr.2721.Google Scholar
  13. 13.
    Aziz M, Matsuda A, Yang W-L, Jacob A, Wang P. Milk fat globule-epidermal growth factor-factor 8 attenuates neutrophil infiltration in acute lung injury via modulation of CXCR2. J Immunol. 2012;189(1):393–402.  https://doi.org/10.4049/jimmunol.0803711.CrossRefGoogle Scholar
  14. 14.
    Boddaert J, Kinugawa K, Lambert J-C, Boukhtouche F, Zoll J, Merval R, Blanc-Brude O, Mann D, Berr C, Vilar J, Garabedian A, Journiac N, Charue D, Silvestre J, Duyckaerts C, Amouyel P, Mariani J, Tedgui A, Mallat Z. Evidence of a role for lactadherin in Alzheimer’s disease. Am J Pathol. 2007;170(3):921–9.  https://doi.org/10.2353/ajpath.2007.060664.CrossRefGoogle Scholar
  15. 15.
    Komura H, Miksa M, Wu R, Goyert SM, Wang P. Milk fat globule epidermal growth factor-factor VIII is down-regulated in sepsis via the lipopolysaccharide-CD14 pathway. J Immunol. 2009;182(1):581–7.  https://doi.org/10.4049/jimmunol.182.1.581.CrossRefGoogle Scholar
  16. 16.
    Matsuda A, Jacob A, Wu R, Zhou M, Nicastro JM, Coppa GF, Wang P. Milk fat globule-EGF factor VIII in sepsis and ischemia-reperfusion injury. Mol Med. 2011;17(1–2):126–33.  https://doi.org/10.2119/molmed.2010.00135.CrossRefGoogle Scholar
  17. 17.
    Kajikawa T, Meshikhes F, Maekawa T, Hajishengallis E, Hosur KB, Abe T, Moss K, Chavakis T, Hajishengallis G. Milk fat globule epidermal growth factor 8 inhibits periodontitis in non-human primates and its gingival crevicular fluid levels can differentiate periodontal health from disease in humans. J Clin Periodontol. 2017;44(5):472–83.  https://doi.org/10.1111/jcpe.12707.CrossRefGoogle Scholar
  18. 18.
    Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4(1):1–6.  https://doi.org/10.1902/annals.1999.4.1.1.CrossRefGoogle Scholar
  19. 19.
    Löe H. The gingival index, the plaque index and the retention index systems. J Periodontol. 1967.  https://doi.org/10.1902/jop.1967.38.6_part2.610.Google Scholar
  20. 20.
    Silness J, Löe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand. 1964;22(1):121–35.  https://doi.org/10.3109/00016356408993968.CrossRefGoogle Scholar
  21. 21.
    Tsai C-C, Ho Y-P, Chen C-C. Levels of interleukin-1β and interleukin-8 in gingival crevicular fluids in adult periodontitis. J Periodontol. 1995;66(10):852–9.  https://doi.org/10.1902/jop.1995.66.10.852.CrossRefGoogle Scholar
  22. 22.
    Lamster I, Celenti R, Jans H, Fine J, Grbic J. Current status of tests for periodontal disease. Adv Dent Res. 1993;7(2):182–90.  https://doi.org/10.1177/08959374930070020901.CrossRefGoogle Scholar
  23. 23.
    Cicek Ari V, Ilarslan YD, Erman B, Sarkarati B, Tezcan I, Karabulut E, et al. Statins and IL-1beta, IL-10, and MPO levels in gingival crevicular fluid: preliminary results. Inflammation. 2016;39(4):1547–57.  https://doi.org/10.1007/s10753-016-0390-7.CrossRefGoogle Scholar
  24. 24.
    Mogi M, Otogoto J, Ota N, Inagaki H, Minami M, Kojima K. Interleukin 1 beta, interleukin 6, beta 2-microglobulin, and transforming growth factor-alpha in gingival crevicular fluid from human periodontal disease. Arch Oral Biol. 1999;44(6):535–9.  https://doi.org/10.1016/S0003-9969(99)00020-5.CrossRefGoogle Scholar
  25. 25.
    Barros SP, Williams R, Offenbacher S, Morelli T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol. 2000;70(1):53–64.  https://doi.org/10.1111/prd.12107.CrossRefGoogle Scholar
  26. 26.
    Yeh CK, Christodoulides NJ, Floriano PN, Miller CS, Ebersole JL, Weigum SE, McDevitt J, Redding S. Current development of saliva/oral fluid-based diagnostics. Tex Dent J. 2010;127(7):651–61.Google Scholar
  27. 27.
    de Lima CL, Acevedo AC, Grisi DC, Taba M, Guerra E, Canto GDL. Host-derived salivary biomarkers in diagnosing periodontal disease: systematic review and meta-analysis. J Clin Periodontol. 2016.  https://doi.org/10.1111/jcpe.12538.Google Scholar
  28. 28.
    Kaushik R, Yeltiwar RK, Pushpanshu K. Salivary interleukin-1beta levels in patients with chronic periodontitis before and after periodontal phase I therapy and healthy controls: a case-control study. J Periodontol. 2011;82(9):1353–9.  https://doi.org/10.1902/jop.2011.100472.CrossRefGoogle Scholar
  29. 29.
    Gumus P, Nizam N, Nalbantsoy A, Ozcaka O, Buduneli N. Saliva and serum levels of pentraxin-3 and interleukin-1beta in generalized aggressive or chronic periodontitis. J Periodontol. 2014;85(3):e40-6.  https://doi.org/10.1902/jop.2013.130281.CrossRefGoogle Scholar
  30. 30.
    Hu C-Y, Wu C, Tsai H, Chang S, Tsai W, Hsu PN. Genetic polymorphism in milk fat globule-EGF factor 8 (MFG-E8) is associated with systemic lupus erythematosus in human. Lupus. 2009;18(8):676–81.  https://doi.org/10.1177/0961203309103027.CrossRefGoogle Scholar
  31. 31.
    Song B, Zhou T, Yang W, Liu J, Shao L. Programmed cell death in periodontitis: recent advances and future perspectives. Oral diseases. 2016.  https://doi.org/10.1111/odi.12574.Google Scholar

Copyright information

© The Society of The Nippon Dental University 2019

Authors and Affiliations

  1. 1.Department of Periodontology, Faculty of DentistryIstanbul Medeniyet UniversityIstanbulTurkey
  2. 2.Oral dental health centerIzmirTurkey
  3. 3.Department of Periodontology, Faculty of DentistryIzmir Katip Çelebi UniversityIzmirTurkey
  4. 4.Department of Periodontology, Faculty of DentistryUniversity of Health ScienceIstanbulTurkey

Personalised recommendations