, Volume 107, Issue 4, pp 421–436 | Cite as

Endodontic sealers based on calcium silicates: a systematic review

  • David Donnermeyer
  • Sebastian Bürklein
  • Till Dammaschke
  • Edgar SchäferEmail author
Review Article


Recently, sealers based on calcium silicates were developed as a new class of endodontic sealers. Inspired by the excellent sealing ability and biocompatibility of calcium silicate-based cements, these sealers establish a biological point of view on the obturation of root canals. No longer, the bacteria-tight seal against reinfection of the root canal is the only goal of root canal obturation. Antibacterial properties as well as bioactive inducement of periapical healing and hard tissue formation are added to the portfolio of sealers. Ready-to-use sealers consisting of only one component with a need for external water supply from, e.g., body fluid and two components sealers with internal water supply were introduced to the market. Both of these material types have the same setting reactions in common whereby a hydration reaction of the calcium silicate is followed by a precipitation reaction of calcium phosphate. Though the available sealers are all based on calcium silicates, they consist of different compositions. Due to this aspect, differences in their physical and chemical properties as well as in their in vitro characteristics were described. Studies addressing the clinical impact of calcium silicate-based sealers on outcome are still sparse. The bioactive potential of sealers based on calcium silicates is a consequence of the slight solubility of these materials even after setting, but solubility of the sealer might also compromise the quality of sealing a root canal against regrowth and reinfection. Further clinical investigations are required to evaluate the clinical relevance of the gulf between bioactivity and solubility.


Bioactivity Leakage Physiochemical properties Push-out bond strength Solubility 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Parirokh M, Torabinejad M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part I: vital pulp therapy. Int Endod J. 2018;51:177–205.Google Scholar
  2. 2.
    Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part II: other clinical applications and complications. Int Endod J. 2018;51:284–317.Google Scholar
  3. 3.
    Thrivikraman G, Madras G, Basu B. In vitro/in vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv. 2014;4:12763–81.Google Scholar
  4. 4.
    Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P. Bioceramics in endodontics—a review. J Istanb Univ Fac Dent. 2017;51:128–37.Google Scholar
  5. 5.
    de Oliveira NG, de Souza Araújo PR, da Silveira MT, Veras Sobral AP, Carvalho MV. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: systematic review. Eur J Dent. 2018;12:317–26.PubMedCentralGoogle Scholar
  6. 6.
    Nasseh A. The rise of bioceramics. Endod Pract US. 2009;2:17–22.Google Scholar
  7. 7.
    Koch K, Brave D, Ali Nasseh A. A review of bioceramic technology in endodontics. Roots. 2013;1:10–3.Google Scholar
  8. 8.
    Al-Haddad A, Ab Aziz C, Zeti A. Bioceramic-based root canal sealers: a review. Int J Biomater. 2016;2016:9753210.PubMedCentralGoogle Scholar
  9. 9.
    Berzins DW. Chemical properties of MTA. In: Torabinejad M, editor. Mineral trioxide aggregate—properties and clinical applications. 1st ed. Ames: Wiley Blackwell; 2014. pp. 17–36.Google Scholar
  10. 10.
    Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Influence of environment on testing of hydraulic sealers. Sci Rep. 2017;7:17927.PubMedCentralGoogle Scholar
  11. 11.
    Prati C, Siboni F, Polimeni A, Bossu M, Gandolfi MG. Use of calcium-containing endodontic sealers as apical barrier in fluid-contaminated wide-open apices. J Appl Biomater Funct Mater. 2014;12:263–70.Google Scholar
  12. 12.
    Camilleri J, Laurent P, About I. Hydration of biodentine, theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod. 2014;40:1846–54.Google Scholar
  13. 13.
    Wang Z, Shen Y, Haapasalo M. Dental materials with antibiofilm properties. Dent Mater. 2014;30:e1–16.Google Scholar
  14. 14.
    Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31:351–70.Google Scholar
  15. 15.
    Jitaru S, Hodisan I, Timis L, Lucian A, Bud M. The use of bioceramics in endodontics—literature review. Clujul Med. 2016;89:470–3.PubMedCentralGoogle Scholar
  16. 16.
    Tour Savadkouhi S, Fazlyab M. Discoloration potential of endodontic sealers: a brief review. Iran Endod J. 2016;11:250–4.PubMedCentralGoogle Scholar
  17. 17.
    Silva Almeida LH, Moraes RR, Morgental RD, Pappen FG. Are premixed calcium silicate-based endodontic sealers comparable to conventional materials? A systematic review of in vitro studies. J Endod. 2017;43:527–35.Google Scholar
  18. 18.
    Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article. J Clin Exp Dent. 2017;9:e1249–e1255.Google Scholar
  19. 19.
    Jafari F, Jafari S, Etesamnia P. Genotoxicity, bioactivity and clinical properties of calcium silicate based sealers: a literature review. Iran Endod J. 2017;12:407–13.PubMedCentralGoogle Scholar
  20. 20.
    Uzunoglu-Özyürek E, Küçükkaya Eren S, Karahan S. Effect of root canal sealers on the fracture resistance of endodontically treated teeth: a systematic review of in vitro studies. Clin Oral Investig. 2018;22:2475–85.Google Scholar
  21. 21.
    Dabaj P, Kalender A, Unverdi Eldeniz A. Push-out bond strength and SEM evaluation in roots filled with two different techniques using new and conventional sealers. Materials (Basel). 2018;11:E1620.Google Scholar
  22. 22.
    Donnermeyer D, Schäfer E, Bürklein S. Real-time intracanal temperature measurement during different obturation techniques. J Endod. 2018;44:1832–6Google Scholar
  23. 23.
    Gandolfi MG, Van Landuyt K, Taddei P, Modena E, VanMeerbeek B, Prati C. Environmental scanning electron microscopy connected with energy dispersive X-ray analysis and Raman techniques to study ProRoot MTA and calcium–silicate cements in wet conditions and in real-time. J Endod. 2010;36:851–7.Google Scholar
  24. 24.
    Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Interfacial characteristics and cytocompatibility of hydraulic sealer cements. J Endod. 2018;44:1007–17.Google Scholar
  25. 25.
    Zamparini F, Siboni F, Prati C, Taddei P, Gandolfi MG. Properties of calcium silicate-monobasic calcium phosphate materials for endodontics containing tantalum pentoxide and zirconium oxide. Clin Oral Investig. 2018. (epub ahead of print).Google Scholar
  26. 26.
    Carvalho CN, Grazziotin-Soares R, de Miranda Candeiro GT, Gallego Martinez L, de Souza JP, Santos Oliveira P, Bauer J, Gavini G. Micro Push-out Bond Strength and bioactivity analysis of a bioceramic root canal sealer. Iran Endod J. 2017;12:343–8.PubMedCentralGoogle Scholar
  27. 27.
    Prüllage RK, Urban K, Schäfer E, Dammaschke T. Material properties of a tricalcium silicate-containing, a mineral trioxide aggregate-containing, and an epoxy resin-based root canal sealer. J Endod. 2016;42:1784–8.Google Scholar
  28. 28.
    Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012;45:737–43.Google Scholar
  29. 29.
    Reszka P, Nowicka A, Lipski M, Dura W, Droździk A, Woźniak K. A Comparative chemical study of calcium silicate-containing and epoxy resin-based root canal sealers. Biomed Res Int. 2016;2016:9808432.PubMedCentralGoogle Scholar
  30. 30.
    Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013;46:808–14.Google Scholar
  31. 31.
    Borges RP, Sousa-Neto MD, Versiani MA, Rached-Júnior FA, De-Deus G, Miranda CE, Pécora JD. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J. 2012;45:419–28.Google Scholar
  32. 32.
    Atmeh AR, AlShwaimi E. The effect of heating time and temperature on epoxy resin and calcium silicate-based endodontic sealers. J Endod. 2017;43:2112–8.Google Scholar
  33. 33.
    Candeiro GT, Correia FC, Duarte MA, Ribeiro-Siqueira DC, Gavini G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod. 2012;38:842–5.Google Scholar
  34. 34.
    Hrab D, Chisnoiu AM, Badea ME, Moldovan M, Chisnoiu RM. Comparative radiographic assessment of a new bioceramic-based root canal sealer. Clujul Med. 2017;90:226–30.PubMedCentralGoogle Scholar
  35. 35.
    Lee JK, Kwak SW, Ha JH, Lee W, Kim HC. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl. 2017;2017:2582849.PubMedCentralGoogle Scholar
  36. 36.
    Tanomaru-Filho M, Torres FFE, Chávez-Andrade GM, de Almeida M, Navarro LG, Steier L, Guerreiro-Tanomaru JM. Physicochemical properties and volumetric change of silicone/bioactive glass and calcium silicate-based endodontic sealers. J Endod. 2017;43:2097–101.Google Scholar
  37. 37.
    Khalil I, Naaman A, Camilleri J. Properties of tricalcium silicate sealers. J Endod. 2016;42:1529–35.Google Scholar
  38. 38.
    Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J. 2017;50(Suppl 2):e120-36.Google Scholar
  39. 39.
    Lim ES, Park YB, Kwon YS, Shon WJ, Lee KW, Min KS. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: in vitro and in vivo study. BMC Oral Health. 2015;15:129.PubMedCentralGoogle Scholar
  40. 40.
    Guerreiro-Tanomaru JM, Duarte MA, Gonçalves M, Tanomaru-Filho M. Radiopacity evaluation of root canal sealers containing calcium hydroxide and MTA. Braz Oral Res. 2009;23:119–23.Google Scholar
  41. 41.
    Tanomaru-Filho M, Bosso R, Viapiana R, Guerreiro-Tanomaru JM. Radiopacity and flow of different endodontic sealers. Acta Odontol Latinoam. 2013;26:121–5.Google Scholar
  42. 42.
    Cañadas PS, Berástegui E, Gaton-Hernández P, Silva LA, Leite GA, Silva RS. Physicochemical properties and interfacial adaptation of root canal sealers. Braz Dent J. 2014;25:435–41.Google Scholar
  43. 43.
    Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod. 2013;39:1281–6.Google Scholar
  44. 44.
    Qu W, Bai W, Liang YH, Gao XJ. Influence of warm vertical compaction technique on physical properties of root canal sealers. J Endod. 2016;42:1829–33.Google Scholar
  45. 45.
    Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod. 2011;37:673–7.Google Scholar
  46. 46.
    Ersahan S, Aydin C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand. 2013;71:857–62.Google Scholar
  47. 47.
    Poggio C, Dagna A, Ceci M, Meravini MV, Colombo M, Pietrocola G. Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent. 2017;9:e1189-94.Google Scholar
  48. 48.
    Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, Pietrocola G. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent. 2018;10:e120-6.Google Scholar
  49. 49.
    Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod. 2018. (epub ahead of print).Google Scholar
  50. 50.
    Yang DK, Kim S, Park JW, Kim E, Shin SJ. Different setting conditions affect surface characteristics and microhardness of calcium silicate-based sealers. Scanning. 2018;2018:7136345.PubMedCentralGoogle Scholar
  51. 51.
    Dudeja C, Taneja S, Kumari M, Singh N. An in vitro comparison of effect on fracture strength, pH and calcium ion diffusion from various biomimetic materials when used for repair of simulated root resorption defects. J Conserv Dent. 2015;18:279–83.PubMedCentralGoogle Scholar
  52. 52.
    Tanomaru-Filho M, Chaves Faleiros FB, Saçaki JN, Hungaro Duarte MA, Guerreiro-Tanomaru JM. Evaluation of pH and calcium ion release of root-end filling materials containing calcium hydroxide or mineral trioxide aggregate. J Endod. 2009;35:1418–21.Google Scholar
  53. 53.
    Xuereb M, Vella P, Damidot D, Sammut CV, Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015;41:111–24.Google Scholar
  54. 54.
    Morgental RD, Vier-Pelisser FV, Oliveira SD, Antunes FC, Cogo DM, Kopper PM. Antibacterial activity of two MTA-based root canal sealers. Int Endod J. 2011;44:1128–33.Google Scholar
  55. 55.
    McMichael GE, Primus CM, Opperman LA. Dentinal tubule penetration of tricalcium silicate sealers. J Endod. 2016;42:632–6.PubMedCentralGoogle Scholar
  56. 56.
    Akcay M, Arslan H, Durmus N, Mese M, Capar ID. Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and Guttaflow Bioseal root canal sealers after different final irrigation procedures: a confocal microscopic study. Lasers Surg Med. 2016;48:70–6.Google Scholar
  57. 57.
    Wang Y, Liu S, Dong Y. In vitro study of dentinal tubule penetration and filling quality of bioceramic sealer. PLoS One. 2018;13:e0192248.PubMedCentralGoogle Scholar
  58. 58.
    Jardim Del Monaco R, Tavares de Oliveira M, Lima AF, Scarparo Navarro R, Zanetti RV, de Fátima Teixeira da Silva D, Horliana ACRT. Influence of Nd:YAG laser on the penetration of a bioceramic root canal sealer into dentinal tubules: a confocal analysis. PLoS One. 2018;13:e0202295.PubMedCentralGoogle Scholar
  59. 59.
    Kim H, Kim E, Lee SJ, Shin SJ. Comparisons of the retreatment efficacy of calcium silicate and epoxy resin-based sealers and residual sealer in dentinal tubules. J Endod. 2015;41:2025–30.Google Scholar
  60. 60.
    Chen H, Zhao X, Qiu Y, Xu D, Cui L, Wu B. The tubular penetration depth and adaption of four sealers: a scanning electron microscopic study. Biomed Res Int. 2017;2017:2946524.PubMedCentralGoogle Scholar
  61. 61.
    Aydın ZU, Özyürek T, Keskin B, Baran T. Effect of chitosan nanoparticle, QMix, and EDTA on TotalFill BC sealers’ dentinal tubule penetration: a confocal laser scanning microscopy study. Odontology. 2018. (epub ahead of print).Google Scholar
  62. 62.
    Ha JH, Kim HC, Kim YK, Kwon TY. An evaluation of wetting and adhesion of three bioceramic root canal sealers to intraradicular human dentin. Materials (Basel). 2018;11:E1286.Google Scholar
  63. 63.
    Uzunoglu-Özyürek E, Erdoğan Ö, Aktemur Türker S. Effect of calcium hydroxide dressing on the dentinal tubule penetration of 2 different root canal sealers: a confocal laser scanning microscopic study. J Endod. 2018;44:1018–23.Google Scholar
  64. 64.
    Arikatla SK, Chalasani U, Mandava J, Yelisela RK. Interfacial adaptation and penetration depth of bioceramic endodontic sealers. J Conserv Dent. 2018;21:373–7.PubMedCentralGoogle Scholar
  65. 65.
    Yoo YJ, Baek SH, Kum KY, Shon WJ, Woo KM, Lee W. Dynamic intratubular biomineralization following root canal obturation with pozzolan-based mineral trioxide aggregate sealer cement. Scanning. 2016;38:50–6.Google Scholar
  66. 66.
    Pawar SS, Pujar MA, Makandar SD. Evaluation of the apical sealing ability of bioceramic sealer, AH plus & epiphany: an in vitro study. J Conserv Dent. 2014;17:579–82.PubMedCentralGoogle Scholar
  67. 67.
    Ballullaya SV, Vinay V, Thumu J, Devalla S, Bollu IP, Balla S. Stereomicroscopic dye leakage measurement of six different root canal sealers. J Clin Diagn Res. 2017;11:ZC65–8.PubMedCentralGoogle Scholar
  68. 68.
    Sayed ME, Al Husseini MAA. H. Apical dye leakage of two single-cone root canal core materials (hydrophilic core material and gutta-percha) sealed by different types of endodontic sealers: an in vitro study. J Conserv Dent. 2018;21:147–12.Google Scholar
  69. 69.
    Zhang W, Li Z, Peng B. Assessment of a new root canal sealer’s apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:e79–82.Google Scholar
  70. 70.
    Ulusoy OI, Nayir Y, Celik K, Yaman SD. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants. Braz Oral Res. 2014;28:1–6.Google Scholar
  71. 71.
    Deniz Sungur D, Moinzadeh AT, Wesselink PR, Çalt Tarhan S, Özok AR. Sealing efficacy of a single-cone root filling after post space preparation. Clin Oral Investig. 2016;20:1071–7.Google Scholar
  72. 72.
    Bidar M, Sadeghalhoseini N, Forghani M, Attaran N.. Effect of the smear layer on apical seals produced by two calcium silicate-based endodontic sealers. J Oral Sci. 2014;56:215–9.Google Scholar
  73. 73.
    Gandhi B, Halebathi-Gowdra R.. Comparative evaluation of the apical sealing ability of a ceramic based sealer and MTA as root-end filling materials—an in-vitro study. J Clin Exp Dent. 2017;9:e901-5.Google Scholar
  74. 74.
    Yanpiset K, Banomyong D, Chotvorrarak K, Srisatjaluk RL. Bacterial leakage and micro-computed tomography evaluation in round-shaped canals obturated with bioceramic cone and sealer using matched single cone technique. Restor Dent Endod. 2018;43:e30.PubMedCentralGoogle Scholar
  75. 75.
    Oh S, Cho SI, Perinpanayagam H, You J, Hong SH, Yoo YJ, Chang SW, Shon WJ, Yoo JS, Baek SH, Kum KY. Novel calcium zirconate silicate cement biomineralize and seal root canals. Materials (Basel). 2018;11:E588.Google Scholar
  76. 76.
    Hwang JH, Chung J, Na HS, Park E, Kwak S, Kim HC. Comparison of bacterial leakage resistance of various root canal filling materials and methods: confocal laser-scanning microscope study. Scanning. 2015;37:422–8.Google Scholar
  77. 77.
    Gomes-Filho JE, Moreira JV, Watanabe S, Lodi CS, Cintra LT, Dezan Junior E, Bernabé PF, Nery MJ, Otoboni Filho JA. Sealability of MTA and calcium hydroxide containing sealers. J Appl Oral Sci. 2012;20:347–51.PubMedCentralGoogle Scholar
  78. 78.
    Tanomaru-Filho M, Faleiros FB, Silva GF, Bosso R, Guerreiro-Tanomaru JM. Sealing ability of retrograde obturation materials containing calcium hydroxide or MTA. Acta Odontol Latinoam. 2011;24:110–4.Google Scholar
  79. 79.
    Bortolini MC, Ferreira dos Santos SS, Habitante SM, Rodrigues JR, Vance R, Jorge AO. Endodontic sealers: intratubular penetration and permeability to Enterococcus faecalis. Indian J Dent Res. 2010;21:40–3.Google Scholar
  80. 80.
    Oliveira AC, Tanomaru JM, Faria-Junior N, Tanomaru-Filho M.. Bacterial leakage in root canals filled with conventional and MTA-based sealers. Int Endod J. 2011;44:370–5.Google Scholar
  81. 81.
    Polineni S, Bolla N, Mandava P, Vemuri S, Mallela M, Gandham VM. Marginal adaptation of newer root canal sealers to dentin: a SEM study. J Conserv Dent. 2016;19:360–3.PubMedCentralGoogle Scholar
  82. 82.
    Huang Y, Orhan K, Celikten B, Orhan AI, Tufenkci P, Sevimay S. Evaluation of the sealing ability of different root canal sealers: a combined SEM and micro-CT study. J Appl Oral Sci. 2018;26:e20160584.PubMedCentralGoogle Scholar
  83. 83.
    Germain S, Meetu K, Issam K, Alfred N, Carla Z. Impact of the root canal taper on the apical adaptability of sealers used in a single-cone technique: a micro-computed tomography study. J Contemp Dent Pract. 2018;19:808–15.Google Scholar
  84. 84.
    Celikten B, Uzuntas CF, Orhan AI, Orhan K, Tufenkci P, Kursun S, Demiralp K. Evaluation of root canal sealer filling quality using a single-cone technique in oval shaped canals: an in vitro Micro-CT study. Scanning. 2016;38:133–40.Google Scholar
  85. 85.
    Al-Haddad A, Abu Kasim NH, Che Ab Aziz ZA. Interfacial adaptation and thickness of bioceramic-based root canal sealers. Dent Mater J. 2015;34:516–21.Google Scholar
  86. 86.
    Viapiana R, Moinzadeh AT, Camilleri L, Wesselink PR, Tanomaru Filho M, Camilleri J. Porosity and sealing ability of root fillings with gutta-percha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int Endod J. 2016;49:774–82.Google Scholar
  87. 87.
    Fernández R, Restrepo JS, Aristizábal DC, Álvarez LG. Evaluation of the filling ability of artificial lateral canals using calcium silicate-based and epoxy resin-based endodontic sealers and two gutta-percha filling techniques. Int Endod J. 2016;49:365–73.Google Scholar
  88. 88.
    Eltair M, Pitchika V, Hickel R, Kühnisch J, Diegritz C. Evaluation of the interface between gutta-percha and two types of sealers using scanning electron microscopy (SEM). Clin Oral Investig. 2018;22:1631–9.Google Scholar
  89. 89.
    Kim JA, Hwang YC, Rosa V, Yu MK, Lee KW, Min KS. Root canal filling quality of a premixed calcium silicate endodontic sealer applied using gutta-percha cone-mediated ultrasonic activation. J Endod. 2018;44:133–8.Google Scholar
  90. 90.
    Nagas E, Uyanik MO, Eymirli A, Cehreli ZC, Vallittu PK, Lassila LV, Durmaz V. Dentin moisture conditions affect the adhesion of root canal sealers. J Endod. 2012;38:240–4.Google Scholar
  91. 91.
    Madhuri GV, Varri S, Bolla N, Mandava P, Akkala LS, Shaik J. Comparison of bond strength of different endodontic sealers to root dentin: an in vitro push-out test. J Conserv Dent. 2016;19:461–4.PubMedCentralGoogle Scholar
  92. 92.
    Gokturk H, Bayram E, Bayram HM, Aslan T, Ustun Y. Effect of double antibiotic and calcium hydroxide pastes on dislodgement resistance of an epoxy resin-based and two calcium silicate-based root canal sealers. Clin Oral Investig. 2017;21:1277–82.Google Scholar
  93. 93.
    Yap WY, Che Ab Aziz ZA, Azami NH, Al-Haddad AY, Khan AA. An in vitro comparison of bond strength of different sealers/obturation systems to root dentin using the push-out test at 2 weeks and 3 months after obturation. Med Princ Pract. 2017;26:464–9.PubMedCentralGoogle Scholar
  94. 94.
    Gade VJ, Belsare LD, Patil S, Bhede R, Gade JR. Evaluation of push-out bond strength of Endosequence BC sealer with lateral condensation and thermoplasticized technique: an in vitro study. J Conserv Dent. 2015;18:124–7.PubMedCentralGoogle Scholar
  95. 95.
    Sagsen B, Ustün Y, Demirbuga S, Pala K. Push-out bond strength of two new calcium silicate-based endodontic sealers to root canal dentine. Int Endod J. 2011;44:1088–91.Google Scholar
  96. 96.
    Amin SA, Seyam RS, El-Samman MA. The effect of prior calcium hydroxide intracanal placement on the bond strength of two calcium silicate-based and an epoxy resin-based endodontic sealer. J Endod. 2012;38:696–9.Google Scholar
  97. 97.
    Shokouhinejad N, Gorjestani H, Nasseh AA, Hoseini A, Mohammadi M, Shamshiri AR. Push-out bond strength of gutta-percha with a new bioceramic sealer in the presence or absence of smear layer. Aust Endod J. 2013;39:102–6.Google Scholar
  98. 98.
    Taşdemir T, Er K, Çelik D, Tahan E, Serper A, Ceyhanli KT, Yeşilyurt C. Bond strength of calcium silicate-based sealers to dentine dried with different techniques. Med Princ Pract. 2014;23:373–6.PubMedCentralGoogle Scholar
  99. 99.
    Gritti GC, Cavalcante SIA, Maia-Filho EM, Bauer J, Bandéca MC, Gavini G, Carvalho CN. Effect of rewetting solutions on micropush-out dentin bond strength of new bioceramic endodontic material. Braz Oral Res. 2017;31:e76.Google Scholar
  100. 100.
    Razmi H, Bolhari B, Karamzadeh Dashti N, Fazlyab M. The effect of canal dryness on bond strength of bioceramic and epoxy-resin sealers after irrigation with sodium hypochlorite or chlorhexidine. Iran Endod J. 2016;11:129–33.PubMedCentralGoogle Scholar
  101. 101.
    Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res. 2014;28:1–7 (S1806–83242014000100256).Google Scholar
  102. 102.
    Al-Haddad AY, Kutty MG, Che Ab Aziz ZA. Push-out bond strength of experimental apatite calcium phosphate based coated gutta-percha. Int J Biomater. 2018;2018:1731857.PubMedCentralGoogle Scholar
  103. 103.
    Pawar AM, Pawar S, Kfir A, Pawar M, Kokate S. Push-out bond strength of root fillings made with C-Point and BC sealer versus gutta-percha and AH Plus after the instrumentation of oval canals with the self-adjusting file versus WaveOne. Int Endod J. 2016;49:374–81.Google Scholar
  104. 104.
    DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. J Endod. 2015;41:385–8.Google Scholar
  105. 105.
    Carvalho CN, Martinelli JR, Bauer J, Haapasalo M, Shen Y, Bradaschia-Correa V, Manso AP, Gavini G. Micropush-out dentine bond strength of a new gutta-percha and niobium phosphate glass composite. Int Endod J. 2015;48:451–9.Google Scholar
  106. 106.
    Ozkocak I, Sonat B. Evaluation of effects on the adhesion of various root canal sealers after Er:YAG laser and irrigants are used on the dentin surface. J Endod. 2015;41:1331–6.Google Scholar
  107. 107.
    Oliveira DS, Cardoso ML, Queiroz TF, Silva EJ, Souza EM, De-Deus G. Suboptimal push-out bond strengths of calcium silicate-based sealers. Int Endod J. 2016;49:796–801.Google Scholar
  108. 108.
    Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod. 2010;36:2000–2.Google Scholar
  109. 109.
    Carvalho NK, Prado MC, Senna PM, Neves AA, Souza EM, Fidel SR, Sassone LM, Silva EJNL. Do smear-layer removal agents affect the push-out bond strength of calcium silicate-based endodontic sealers? Int Endod J. 2017;50:612–19.Google Scholar
  110. 110.
    Tuncel B, Nagas E, Cehreli Z, Uyanik O, Vallittu P, Lassila L. Effect of endodontic chelating solutions on the bond strength of endodontic sealers. Braz Oral Res. 2015;29:1–6 (S1806–83242015000100256).Google Scholar
  111. 111.
    Shokouhinejad N, Hoseini A, Gorjestani H, Shamshiri AR. The effect of different irrigation protocols for smear layer removal on bond strength of a new bioceramic sealer. Iran Endod J. 2013;8:10–3.PubMedCentralGoogle Scholar
  112. 112.
    Ghabraei S, Bolhari B, Yaghoobnejad F, Meraji N. Effect of intra-canal calcium hydroxide remnants on the push-out bond strength of two endodontic sealers. Iran Endod J. 2017;12:168–72.PubMedCentralGoogle Scholar
  113. 113.
    Hegde V, Arora S. Effect of intracanal medicaments on push-out bond strength of Smart-Seal system. J Conserv Dent. 2015;18:414–8.PubMedCentralGoogle Scholar
  114. 114.
    Donnermeyer D, Dornseifer P, Schäfer E, Dammaschke T. The push-out bond strength of calcium silicate-based endodontic sealers. Head Face Med. 2018;14:13.PubMedCentralGoogle Scholar
  115. 115.
    Donnermeyer D, Vahdat-Pajouh N, Schäfer E, Dammaschke T. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology. 2018. (epub ahead of print).Google Scholar
  116. 116.
    Silva EJ, Carvalho NK, Prado MC, Zanon M, Senna PM, Souza EM, De-Deus G. Push-out bond strength of injectable pozzolan-based root canal sealer. J Endod. 2016;42:1656–9.Google Scholar
  117. 117.
    Assmann E, Scarparo RK, Böttcher DE, Grecca FS. Dentin bond strength of two mineral trioxide aggregate-based and one epoxy resin-based sealers. J Endod. 2012;38:219–21.Google Scholar
  118. 118.
    Możyńska J, Metlerski M, Lipski M, Nowicka A. Tooth discoloration induced by different calcium silicate-based cements: a systematic review of in vitro studies. J Endod. 2017;43:1593–601.Google Scholar
  119. 119.
    Berger T, Baratz AZ, Gutmann JL. In vitro investigations into the etiology of mineral trioxide tooth staining. J Conserv Dent. 2014;17:526–30.PubMedCentralGoogle Scholar
  120. 120.
    Dettwiler CA, Walter M, Zaugg LK, Lenherr P, Weiger R, Krastl G. In vitro assessment of the tooth staining potential of endodontic materials in a bovine tooth model. Dent Traumatol. 2016;32:480–7.Google Scholar
  121. 121.
    Shokouhinejad N, Nekoofar MH, Pirmoazen S, Shamshiri AR, Dummer PM. Evaluation and comparison of occurrence of tooth discoloration after the application of various calcium silicate-based cements: an ex vivo study. J Endod. 2016;42:140–4.Google Scholar
  122. 122.
    Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014;40:436–40.Google Scholar
  123. 123.
    Lenherr P, Allgayer N, Weiger R, Filippi A, Attin T, Krastl G. Tooth discoloration induced by endodontic materials: a laboratory study. Int Endod J. 2012;45:942–9.Google Scholar
  124. 124.
    Forghani M, Gharechahi M, Karimpour S. In vitro evaluation of tooth discolouration induced by mineral trioxide aggregate Fillapex and iRoot SP endodontic sealers. Aust Endod J. 2016;42:99–103.Google Scholar
  125. 125.
    Lee DS, Lim MJ, Choi Y, Rosa V, Hong CU, Min KS. Tooth discoloration induced by a novel mineral trioxide aggregate-based root canal sealer. Eur J Dent. 2016;10:403–7.PubMedCentralGoogle Scholar
  126. 126.
    Sağsen B, Ustün Y, Pala K, Demırbuğa S. Resistance to fracture of roots filled with different sealers. Dent Mater J. 2012;31:528–32.Google Scholar
  127. 127.
    Topçuoğlu HS, Tuncay Ö, Karataş E, Arslan H, Yeter K. In vitro fracture resistance of roots obturated with epoxy resin-based, mineral trioxide aggregate-based, and bioceramic root canal sealers. J Endod. 2013;39:1630–3.Google Scholar
  128. 128.
    Ulusoy Öİ, Nayır Y, Darendeliler-Yaman S. Effect of different root canal sealers on fracture strength of simulated immature roots. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:544–7.Google Scholar
  129. 129.
    Dibaji F, Afkhami F, Bidkhori B, Kharazifard MJ. Fracture resistance of roots after application of different sealers. Iran Endod J. 2017;12:50–4.PubMedCentralGoogle Scholar
  130. 130.
    Hegde V, Arora S. Fracture resistance of roots obturated with novel hydrophilic obturation systems. J Conserv Dent. 2015;18:261–4.PubMedCentralGoogle Scholar
  131. 131.
    Patil P, Banga KS, Pawar AM, Pimple S, Ganeshan R. Influence of root canal obturation using gutta-percha with three different sealers on root reinforcement of endodontically treated teeth. An in vitro comparative study of mandibular incisors. J Conserv Dent. 2017;20:241–4.PubMedCentralGoogle Scholar
  132. 132.
    Ghoneim AG, Lutfy RA, Sabet NE, Fayyad DM. Resistance to fracture of roots obturated with novel canal-filling systems. J Endod. 2011;37:1590–2.Google Scholar
  133. 133.
    Celikten B, Uzuntas CF, Gulsahi K. Resistance to fracture of dental roots obturated with different materials. Biomed Res Int. 2015;2015:591031.PubMedCentralGoogle Scholar
  134. 134.
    Khallaf ME. Effect of two contemporary root canal sealers on root canal dentin microhardness. J Clin Exp Dent. 2017;9:e67–70.PubMedCentralGoogle Scholar
  135. 135.
    Sungur DD, Altundasar E, Uzunoglu E, Yilmaz Z. Influence of different final irrigation regimens and various endodontic filling materials on vertical root fracture resistance. Niger J Clin Pract. 2016;19:267–71.Google Scholar
  136. 136.
    Özcan E, Çapar İD, Çetin AR, Tunçdemir AR, Aydınbelge HA. The effect of calcium silicate-based sealer on the push-out bond strength of fibre posts. Aust Dent J. 2012;57:166–70.Google Scholar
  137. 137.
    Vilas-Boas DA, Grazziotin-Soares R, Ardenghi DM, Bauer J, de Souza PO, de Miranda Candeiro GT, Maia-Filho EM, Carvalho CN. Effect of different endodontic sealers and time of cementation on push-out bond strength of fiber posts. Clin Oral Investig. 2018;22:1403–9.Google Scholar
  138. 138.
    Dibaji F, Mohammadi E, Farid F, Mohammadian F, Sarraf P, Kharrazifard MJ. The effect of BC Sealer, AH-Plus and Dorifill on push-out bond strength of fiber post. Iran Endod J. 2017;12:443–8.PubMedCentralGoogle Scholar
  139. 139.
    Chen X, Liu H, He Y, Luo T, Zou L. Effects of endodontic sealers and irrigation systems on smear layer removal after post space preparation. J Endod. 2018;44:1293–7.Google Scholar
  140. 140.
    Uzunoglu E, Yilmaz Z, Sungur DD, Altundasar E. Retreatability of root canals obturated using gutta-percha with bioceramic, mta and resin-based sealers. Iran Endod J. 2015;10:93–8.PubMedCentralGoogle Scholar
  141. 141.
    de Siqueira Zuolo A, Zuolo ML, da Silveira Bueno CE, Chu R, Cunha RS. Evaluation of the efficacy of TRUShape and Reciproc File Systems in the removal of root filling material: an ex vivo micro-computed tomographic study. J Endod. 2016;42:315–9.Google Scholar
  142. 142.
    Oltra E, Cox TC, LaCourse MR, Johnson JD, Paranjpe A. Retreatability of two endodontic sealers, EndoSequence BC Sealer and AH Plus: a micro-computed tomographic comparison. Restor Dent Endod. 2017;42:19–26.Google Scholar
  143. 143.
    Ersev H, Yilmaz B, Dinçol ME, Dağlaroğlu R. The efficacy of ProTaper Universal rotary retreatment instrumentation to remove single gutta-percha cones cemented with several endodontic sealers. Int Endod J. 2012;45:756–62.Google Scholar
  144. 144.
    Suk M, Bago I, Katić M, Šnjarić D, Munitić M, Anić I. The efficacy of photon-initiated photoacoustic streaming in the removal of calcium silicate-based filling remnants from the root canal after rotary retreatment. Lasers Med Sci. 2017;32:2055–62.Google Scholar
  145. 145.
    Simsek N, Keles A, Ahmetoglu F, Ocak MS, Yologlu S. Comparison of different retreatment techniques and root canal sealers: a scanning electron microscopic study. Braz Oral Res. 2014;28:1–7 (S1806–83242014000100221).Google Scholar
  146. 146.
    Hess D, Solomon E, Spears R, He J. Retreatability of a bioceramic root canal sealing material. J Endod. 2011;37:1547–9.Google Scholar
  147. 147.
    Agrafioti A, Koursoumis AD, Kontakiotis EG. Re-establishing apical patency after obturation with Gutta-percha and two novel calcium silicate-based sealers. Eur J Dent. 2015;9:457–61.PubMedCentralGoogle Scholar
  148. 148.
    Donnermeyer D, Bunne C, Schäfer E, Dammaschke T. Retreatability of three calcium silicate-containing sealers and one epoxy resin-based root canal sealer with four different root canal instruments. Clin Oral Investig. 2018;22:811–7.Google Scholar
  149. 149.
    Singh G, Gupta I, Elshamy FM, Boreak N, Homeida HE. In vitro comparison of antibacterial properties of bioceramic-based sealer, resin-based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates. Eur J Dent. 2016;10:366–9.PubMedCentralGoogle Scholar
  150. 150.
    Nirupama DN, Nainan MT, Ramaswamy R, Muralidharan S, Usha HH, Sharma R, Gupta S. In vitro evaluation of the antimicrobial efficacy of four endodontic biomaterials against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus. Int J Biomater. 2014;2014:383756.PubMedCentralGoogle Scholar
  151. 151.
    Singh G, Elshamy FM, Homeida HE, Boreak N, Gupta I. An in vitro comparison of antimicrobial activity of three endodontic sealers with different composition. J Contemp Dent Pract. 2016;1:17:553–6.Google Scholar
  152. 152.
    Ozcan E, Yula E, Arslanoğlu Z, Inci M. Antifungal activity of several root canal sealers against Candida albicans. Acta Odontol Scand. 2013;71:1481–5.Google Scholar
  153. 153.
    Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009;35:1051–5.Google Scholar
  154. 154.
    Willershausen I, Callaway A, Briseño B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med. 2011;7:15.PubMedCentralGoogle Scholar
  155. 155.
    Candeiro GTM, Moura-Netto C, D’Almeida-Couto RS, Azambuja-Júnior N, Marques MM, Cai S, Gavini G. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J. 2016;49:858–64.Google Scholar
  156. 156.
    Wang Z, Shen Y, Haapasalo M. Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod. 2014;40:505–8.Google Scholar
  157. 157.
    Arias-Moliz MT, Camilleri J. The effect of the final irrigant on the antimicrobial activity of root canal sealers. J Dent. 2016;52:30–6.Google Scholar
  158. 158.
    Tanomaru JM, Tanomaru-Filho M, Hotta J, Watanabe E, Ito IY. Antimicrobial activity of endodontic sealers based on calcium hydroxide and MTA. Acta Odontol Latinoam. 2008;21:147–51.Google Scholar
  159. 159.
    Zhang W, Peng B. Tissue reactions after subcutaneous and intraosseous implantation of iRoot SP, MTA and AH Plus. Dent Mater J. 2015;34:774–80.Google Scholar
  160. 160.
    Bósio CC, Felippe GS, Bortoluzzi EA, Felippe MC, Felippe WT, Rivero ER. Subcutaneous connective tissue reactions to iRoot SP, mineral trioxide aggregate (MTA) Fillapex, DiaRoot BioAggregate and MTA. Int Endod J. 2014;47:667–74.Google Scholar
  161. 161.
    Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod. 2014;40:1642–8.Google Scholar
  162. 162.
    Eldeniz AU, Shehata M, Högg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J. 2016;49:1141–51.Google Scholar
  163. 163.
    Taraslia V, Anastasiadou E, Lignou C, Keratiotis G, Agrafioti A, Kontakiotis EG. Assessment of cell viability in four novel endodontic sealers. Eur J Dent. 2018;12:287–91.PubMedCentralGoogle Scholar
  164. 164.
    Rodríguez-Lozano FJ, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Forner L, Moraleda JM. Evaluation of cytocompatibility of calcium silicate-based endodontic sealers and their effects on the biological responses of mesenchymal dental stem cells. Int Endod J. 2017;50:67–76.Google Scholar
  165. 165.
    Mukhtar-Fayyad D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:e137-42.Google Scholar
  166. 166.
    Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod. 2015;41:56–61.Google Scholar
  167. 167.
    Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent. 2017;9:e574-8.Google Scholar
  168. 168.
    da Silva EJNL, Zaia AA, Peters OA. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin Oral Investig. 2017;21:1531–6.Google Scholar
  169. 169.
    Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J. 2010;43:769–74.Google Scholar
  170. 170.
    Baraba A, Pezelj-Ribaric S, Roguljić M, Miletic I. Cytotoxicity of two bioactive root canal sealers. Acta Stomatol Croat. 2016;50:8–13.PubMedCentralGoogle Scholar
  171. 171.
    Silva EJ, Carvalho NK, Ronconi CT, De-Deus G, Zuolo ML, Zaia AA. Cytotoxicity profile of endodontic sealers provided by 3d cell culture experimental model. Braz Dent J. 2016;27:652–6.Google Scholar
  172. 172.
    Nair AV, Nayak M, Prasada LK, Shetty V, Kumar CNV, Nair RR. Comparative evaluation of cytotoxicity and genotoxicity of two bioceramic sealers on fibroblast cell line: an in vitro study. J Contemp Dent Pract. 2018;19:656–61.Google Scholar
  173. 173.
    Güven EP, Yalvaç ME, Kayahan MB, Sunay H, Şahın F, Bayirli G. Human tooth germ stem cell response to calcium-silicate based endodontic cements. J Appl Oral Sci. 2013;21:351–7.Google Scholar
  174. 174.
    Zhang W, Li Z, Peng B. Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod. 2010;36:1978–82.Google Scholar
  175. 175.
    Zoufan K, Jiang J, Komabayashi T, Wang YH, Safavi KE, Zhu Q. Cytotoxicity evaluation of Gutta Flow and Endo Sequence BC sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:657–61.Google Scholar
  176. 176.
    Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, Almadhri R, Alfayez M, Anil S. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules. 2018;1;8:E68.Google Scholar
  177. 177.
    Er K, Ayar A, Kalkan OF, Canpolat S, Tasdemir T, Ozan U. Neurotoxicity evaluation of three root canal sealers on cultured rat trigeminal ganglion neurons. J Clin Exp Dent. 2017;9:e34-9.Google Scholar
  178. 178.
    Ruparel NB, Ruparel SB, Chen PB, Ishikawa B, Diogenes A. Direct effect of endodontic sealers on trigeminal neuronal activity. J Endod. 2014;40:683–7.Google Scholar
  179. 179.
    Zhu X, Yuan Z, Yan P, Li Y, Jiang H, Huang S. Effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages. Arch Oral Biol. 2017;80:27–33.Google Scholar
  180. 180.
    Yuan Z, Zhu X, Li Y, Yan P, Jiang H. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide. BMC Oral Health. 2018;18:56.PubMedCentralGoogle Scholar
  181. 181.
    Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J. 2013;46:1173–82.Google Scholar
  182. 182.
    Zaki DY, Zaazou MH, Khallaf ME, Hamdy TM. In vivo comparative evaluation of periapical healing in response to a calcium silicate and calcium hydroxide based endodontic sealers. Open Access Maced J Med Sci. 2018;6:1475–9.PubMedCentralGoogle Scholar
  183. 183.
    Jung S, Libricht V, Sielker S, Hanisch MR, Schäfer E, Dammaschke T. Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo. Odontology. 2018. (epub ahead of print).Google Scholar
  184. 184.
    Vouzara T, Dimosiari G, Koulaouzidou EA, Economides N. Cytotoxicity of a new calcium silicate endodontic sealer. J Endod. 2018;44:849–52.Google Scholar
  185. 185.
    Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro. J Endod. 2015;41:1469–73.Google Scholar
  186. 186.
    Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, Simon S, Fournier BPJ. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One. 2018;13:e0190014.PubMedCentralGoogle Scholar
  187. 187.
    Jung S, Sielker S, Hanisch MR, Libricht V, Schäfer E, Dammaschke T. Cytotoxic effects of four different root canal sealers on human osteoblasts. PLoS One. 2018;13:e0194467.PubMedCentralGoogle Scholar
  188. 188.
    Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J. 2017;50:875–84.Google Scholar
  189. 189.
    Scarparo RK, Haddad D, Acasigua GA, Fossati AC, Fachin EV, Grecca FS. Mineral trioxide aggregate-based sealer: analysis of tissue reactions to a new endodontic material. J Endod. 2010;36:1174–8.Google Scholar
  190. 190.
    Gomes-Filho JE, Watanabe S, Bernabé PF, de Moraes Costa MT. A mineral trioxide aggregate sealer stimulated mineralization. J Endod. 2009;35:256–60.Google Scholar
  191. 191.
    Gomes-Filho JE, Watanabe S, Gomes AC, Faria MD, Lodi CS, Penha Oliveira SH. Evaluation of the effects of endodontic materials on fibroblast viability and cytokine production. J Endod. 2009;35:1577–9.Google Scholar
  192. 192.
    da Silva GF, Guerreiro-Tanomaru JM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Histological and histomorphometrical evaluation of furcation perforations filled with MTA, CPM and ZOE. Int Endod J. 2011;44:100–10.Google Scholar
  193. 193.
    Gomes-Filho JE, Watanabe S, Cintra LT, Nery MJ, Dezan-Júnior E, Queiroz IO, Lodi CS, Basso MD. Effect of MTA-based sealer on the healing of periapical lesions. J Appl Oral Sci. 2013;21:235–42.PubMedCentralGoogle Scholar
  194. 194.
    Graunaite I, Skucaite N, Lodiene G, Agentiene I, Machiulskiene V. Effect of resin-based and bioceramic root canal sealers on postoperative pain: a split-mouth randomized controlled trial. J Endod. 2018;44:689–93.Google Scholar
  195. 195.
    Chybowski EA, Glickman GN, Patel Y, Fleury A, Solomon E, He J. Clinical outcome of non-surgical root canal treatment using a single-cone technique with Endosequence bioceramic sealer: a retrospective analysis. J Endod. 2018;44:941–5.Google Scholar

Copyright information

© The Society of The Nippon Dental University 2018

Authors and Affiliations

  1. 1.Department of Periodontology and Operative DentistryWestphalian Wilhelms-UniversityMünsterGermany
  2. 2.Central Interdisciplinary Ambulance in the School of DentistryMünsterGermany

Personalised recommendations