Journal of Plant Research

, Volume 131, Issue 1, pp 99–110 | Cite as

Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria

  • Manel Chiboub
  • Salwa Harzalli Jebara
  • Omar Saadani
  • Imen Challougui Fatnassi
  • Souhir Abdelkerim
  • Moez Jebara
Regular Paper

Abstract

Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.

Keywords

Cadmium Sulla coronaria Phytostabilization PGPB Symbiosis 

Abbreviations

APX

Ascorbate peroxidase

CAT

Catalase

DAS

Days after sowing

DW

Dry weight

EDTA

Ethylene diamine tetra-acetic

FAAS

Flame atomic absorption spectrophotometer

FW

Fresh weight

IAA

Indole acetic acid

ICP–MS

Inductively coupled plasma/mass spectrometry

GSH

Gluthatione

GSSG

Gluthatione disulfure

GPOX

Guaiacol peroxidase

MDA

Malondialdehyde

NBT

Nitroblue tetrazolium

PGPB

Plant growth promoting bacteria

PGPR

Plant growth promoting rhizobacteria

PMSF

Fluorure of phenylmethylsulfonyle

PVP

Polyvinylpyrrolidone

RDW

Root dry weight

ROS

Reactive oxygen species

SDW

Shoot dry weight

SOD

Superoxide dismutase

TBA

Thiobarbituric acid

TCA

Trichloroacetic acid

UFC

Unit Forming colony

YEM

Yeast extract medium

References

  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefPubMedGoogle Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  3. Amako K, Chen G-X, Asada K (1994) Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol 35:497–504Google Scholar
  4. Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozymes profiles of catalase, peroxidase and gluthationereductase during acclimation to chilling in mesocotyls of maize seedling. Plant Physiol 109:1247–1257CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baize D (2000) Teneurs totales en “métaux lourds” dans les sols français. Courr Environ INRA 39:39–54Google Scholar
  6. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287CrossRefPubMedGoogle Scholar
  7. Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381CrossRefGoogle Scholar
  8. Ben Guedouar A, Corich V, Giacomini A, Squartini A, Nuti MP (1997) Characterization of symbiotic bacteria from the Mediterranean legume crop Hedysarum coronarium (Sulla) by multilocus enzyme electrophoresis. Agric Med 127:173–177Google Scholar
  9. Ben Jeddi F (2004) Amélioration du sulla du nord spontanné : création variétale et et progrès génétique. In 1ère session de formation des ingénieurs de nord sur le sulla Bikra 21 dans les systèmes de culture. Ministère de l’agriculture, de l’environnement et des ressources hydrauliques-DGPA., 29 mars-02 avril 2004, Sidi thabet, TunisieGoogle Scholar
  10. Bidar G, Garçon G, Pruvot C, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of the metal uptake and toxicity, in Trifolium repens and Lolium perenne growing in a heavy metal contaminated field. Environ Sci Pollut Res 16:42–53CrossRefGoogle Scholar
  11. Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  12. Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147CrossRefGoogle Scholar
  13. Chen WM, Yu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwaninsis and its effects on heavy metals removal by nodulated Mimosa pudica. J Hazard Mater 153:364–372CrossRefGoogle Scholar
  14. Chiboub M, Saadani O, Fatnassi CI, Abdelkrim S, Abid G, Jebara M, Jebara HS (2016) Characterization of efficient plant growth promoting bacteria isolated from Sulla coronaria resistant to cadmium and other heavy metals. Comptes Rendus Biol 339:391–398CrossRefGoogle Scholar
  15. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. doi: 10.1155/2014/752708 (ID 752708) Google Scholar
  16. Corticeiro SC, Lima AIG, Figueira EMDAP (2006) The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure. Enzyme Microb Technol 40:132–137CrossRefGoogle Scholar
  17. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940CrossRefPubMedGoogle Scholar
  18. Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330CrossRefPubMedGoogle Scholar
  19. Dixit V, Pandey V, Shymar R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv Azard). J Exp Bot 52:1101–1109CrossRefPubMedGoogle Scholar
  20. Fan LM, Zhan-Q M, Liang JQ, Hui-Fen Li, Wang ET, Wei GH (2011) Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. Bioresour Technol 102:703–709CrossRefPubMedGoogle Scholar
  21. Fatnassi CI, Chiboub M, Jebara M, Jebara HS (2014) Bacteria associated with different legume species grown in heavy-metal contaminated soils. Int J Agric Policy Res 2:460–467Google Scholar
  22. Fatnassi CI, Chiboub M, Saadani O, Jebara M, Jebara HS (2015) Phytostabilization of moderate copper contaminated soils using co-inoculation of Vicia faba with plant growth promoting bacteria. J Basic Microbiol 55:303–311CrossRefPubMedGoogle Scholar
  23. Feng Q, Shi X, Wang M, Wei F, Yang, Xu H (2010) Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hortic 123:521–530CrossRefGoogle Scholar
  24. Flores F, Gutiérrez JC, López J, Moreno MT, Cubero JI (1997) Multivariate analysis approach to evaluate a germoplasm collection of Hedysarum coronarium L. Genet Res Crop Evol 44:545–555CrossRefGoogle Scholar
  25. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplast, peroisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  26. Frerot H, Lefebvre C, Gruber W, Collin C, Dos Santos A, Escarré J (2006) Specific interactions between local metallicolous plants improves the phytostabilization of mine soils. Plant Soil 282:53–65CrossRefGoogle Scholar
  27. Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274CrossRefPubMedGoogle Scholar
  28. Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159CrossRefGoogle Scholar
  29. Gill SS, Khan NA, Tuteja N (2012) Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci 182:112–120CrossRefPubMedGoogle Scholar
  30. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefPubMedGoogle Scholar
  31. Goel AK, Sindhu SS, Dadarwal KR (2000) Stimulation of nodulation and plant growth of chickpea by Pseudomonas spp. antagonistic to fungal pathogens. Biol Fertil Soil 36:391–396Google Scholar
  32. Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres L, Azevedo RA (2012) Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96CrossRefPubMedGoogle Scholar
  33. Hao X, Taghavi S, Xie P, Orbach MJ, Alwathnani HA, Rensing C, Wei G (2014) phytoremediation of heavy and transition metals aided by legume–rhizobia symbiosis. Int J Phytorem 16:179–202CrossRefGoogle Scholar
  34. Haribabu TE, Sudha PN (2011) Effect of heavy metals copper and cadmium exposure on the antioxidant properties of the plant cleome Gynandra. Int J Plant Anim Environ Sci 1:80–87Google Scholar
  35. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts 1. Kinetics and stoichiometry of fatty acid peroxidatoin. Arch Biochem Biophys 125:189–198CrossRefPubMedGoogle Scholar
  36. Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in Mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plant 16:259–272CrossRefGoogle Scholar
  37. Jebara HS, Abdelkerim S, Challougui FI, Chiboub M, Saadani O, Jebara M (2014) Identification of effective Pb resistant bacteria isolated from Lens culinaris growing in lead contaminated soils. J Basic Microbiol 54:1–8CrossRefGoogle Scholar
  38. Jebara HS, Saadani O, Fatnassi CI, Chiboub M, Abdelkerim S, Jebara M (2015) Inoculation of Lens culinaris with Pb-resistant bacteria shows potential for phytostabilization. Environ Sci Pollut 22:2537–2545CrossRefGoogle Scholar
  39. Liang YC, Chen Q, Liu Q, Zhang WH, Ding RX (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164CrossRefPubMedGoogle Scholar
  40. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophyll ‘a’ and ‘b’ of leaf extracts in different solvents. Biochem Soc Trans 11:591–592CrossRefGoogle Scholar
  41. Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618CrossRefPubMedGoogle Scholar
  42. Marchiol L, Fellet G, Boscutti F, Montella C, Mozzi R, Guarino C (2013) Gentle remediation at the former “Pertusola Sud” zinc smelter: evaluation of native species for phytoremediation purposes. Ecol Eng 53:343–353CrossRefGoogle Scholar
  43. Mendez MO, Maier MR (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283CrossRefPubMedGoogle Scholar
  44. Mhadhbi H, Mhamdi R, Jebara M, Limam F, Aouani ME (2009) Legume–rhizobia symbiotic interaction under salt and draught conditions: generation of reactive oxygen species and protective role of antioxidant enzymes within nodules. Adv Plant Physiol 11:1–21Google Scholar
  45. Mishra PK, Shekhar CB, Mishra S, Selvakumar G, Bisht JK, Gupta HS (2012) Coinoculation of Rhizobium Leguminosarum-Pr1 with a cold tolerant Pseudomonas sp. improves Iron acquisition, nutrient uptake and growth of field Pea (Pisum Sativum L.). J Plant Nutr 35:243–256CrossRefGoogle Scholar
  46. Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization pods. Environ Pollut 98:233–238CrossRefGoogle Scholar
  47. Muglia C, Comai G, Spegazzini E, Riccillo PM, Aguilar OM (2008) Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules. FEMS Microbiol Lett 23:191–198CrossRefGoogle Scholar
  48. Nada E, Ferjani BA, Rhouma A, Bechir BR, Imed M, Makki B (2007) Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta. Physiol Plant 29:57–62Google Scholar
  49. Nazar R, Iqbal N, Mashood A, Khan MIR, Syeed S, Khan NA (2012) Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci 3:1476–1489CrossRefGoogle Scholar
  50. Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomares AJ (2008) Toxic effects of arsenic on Sinorhizobium–Medicago sativa symbiotic interaction. Environ Pollut 154:203–211CrossRefPubMedGoogle Scholar
  51. Pichtel J, Bradway DJ (2008) Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresour Technol 99:1242–1251CrossRefPubMedGoogle Scholar
  52. Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z (2009) Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis related gene transcription. Aquat Toxicol 94:56–61CrossRefPubMedGoogle Scholar
  53. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudha-kar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.) Chemosphere 60:97–104CrossRefPubMedGoogle Scholar
  54. Rhodes ME (1959) The Characterization of Pseudomonas fluorescens. Microbiology 21:221–265Google Scholar
  55. Rodriguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, del Río LA, Sandalio LM (2009) Cellular responses of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243CrossRefPubMedPubMedCentralGoogle Scholar
  56. Romero-Puertas MC, Corpasa Maria FJ, Rodriguez-Serrano M, Gomez M, A del Rıo A, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357CrossRefPubMedGoogle Scholar
  57. Saadani O, Fatnassi CI, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara HS (2016) In situ phytostabilisation capacity of three legumes and their associated plant growth promoting bacteria (PGPBs) in mine tailings of northern Tunisia. Ecotoxicol Environ Saf 130:263–269CrossRefPubMedGoogle Scholar
  58. Safronova VL, Piluzza G, Bullitta S, Belimov AA (2011) Use of legume-microbe symbioses for phytoremediation of heavy metal polluted soils: advantages and potential problems. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science Publishers, New York, pp 443–447Google Scholar
  59. Shi G, Liu C, Cai Q, Liu Q, Hou C (2010) Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes. Bull Environ Contam Toxicol 85:256–263CrossRefPubMedGoogle Scholar
  60. Slim S, Ben Jeddi F, Marouani A, Bouajila K (2012) Caractéristiques herbagères de la culture du Sulla (Hedysarum coronarium L.) en régions montagneuses du Nord de la Tunisie. J Anim Plant Sci 13:1831–1847Google Scholar
  61. Squartini A, Struffi P, Döring H, Selenska-Pobell S, Tola E, Giacomini A, Vendramin E, Velázquez E, Mateos PF, Martínez-Molina E, Dazzo FB, Casella S, Nuti MP (2002) Rhizobium sullae sp. nov. (formerly ‘Rhizobium hedysari’), the root-nodule microsymbiont of Hedysarum coronarium L. Int J Syst Evol Microbiol 52:1267–1276PubMedGoogle Scholar
  62. Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280CrossRefGoogle Scholar
  63. Talukdar D (2011) Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. J Med Plants Res 5:3619–3628Google Scholar
  64. Tran TA, Popova LP, Stromeyer F, Hermann K. (2013) Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk J Bot 37:1–13Google Scholar
  65. Trifi F, Baatout, H, Boussaïd M, Combes D, Figier J, Hannachi-Salhi A, Marrakchi M (2002) Evaluation des ressources génétiques des espèces du genre Hedysarum dans le bassin méditerranéen. Plant Genet Res Newslett 130:1–6Google Scholar
  66. Vadez V, Rodier F, Payre H, Drevon JJ (1996) Nodule permeability to O2 and nitrogenase linked respiration in bean landraces varying in the tolerance of N2 fixation to P deficiency. Plant Physiol Biochem 34:871–878Google Scholar
  67. Vásquez-Murrieta MS, Migueles-Garduño I, Franco- Hernandez O, Govaerts B, Dendooven L (2006) C and N mineralization and microbial biomass in heavy metal contaminated soil. Eur J Soil Biol 42:89–98CrossRefGoogle Scholar
  68. Vincent JM (1970) A manual for practical study of root nodule bacteria. IBP Handbook. Blackwell Scientific Publications, Oxford, p 15Google Scholar
  69. Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, Kwak SS (2009) Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol Biochem 47:570–577CrossRefPubMedGoogle Scholar
  70. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163CrossRefPubMedGoogle Scholar
  71. Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 83:175–182CrossRefGoogle Scholar
  72. Zhang LH, Li PJ, Li M, Meng XL, Xu CB (2005) Effects of cadmium stress on the growth and physiological characters of wheat seedlings. Chin J Ecol 25:458–460Google Scholar
  73. Zhuang XL, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413CrossRefPubMedGoogle Scholar

Copyright information

© The Botanical Society of Japan and Springer Japan KK 2017

Authors and Affiliations

  • Manel Chiboub
    • 1
  • Salwa Harzalli Jebara
    • 1
  • Omar Saadani
    • 1
  • Imen Challougui Fatnassi
    • 1
  • Souhir Abdelkerim
    • 1
  • Moez Jebara
    • 1
  1. 1.Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria University Tunis El ManarHammam LifTunisia

Personalised recommendations