Advertisement

Decomposition by subpopulations of the Zenga-84 inequality curve and the related index \(\zeta \): an application to 2014 Bank of Italy survey

  • Francesco PorroEmail author
  • Michele Zenga
Original Paper
  • 11 Downloads

Abstract

This paper describes an innovative procedure to decompose by subpopulations the values assumed by the Zenga-84 inequality curve Z(p). This decomposition allows to identify the contributions to the inequality at the subpopulation level, feature that the most of the decomposition procedures do not have. Since the synthetic inequality index \(\zeta \) is obtained as the average of the values of Z(p)—which are appropriate relative variations—the results of such first decomposition can be used to obtain many other different decompositions of the synthetic index \(\zeta \). In this framework, the classical decomposition of the index \(\zeta \) in the “Between” and the “Within” components can be performed as a special case. The proposed procedure is illustrated through an application with real data from a sample survey provided by Bank of Italy in 2015.

Keywords

Income inequality Decomposition by subpopulations Inequality curve Z(pInequality index \(\zeta \) Cograduation table 

Notes

Supplementary material

10260_2019_459_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (pdf 120 KB)

References

  1. Aly EA, Hervas MO (1999) Nonparametric inference for Zenga’s measure of income inequality. Metron 52:69–84zbMATHGoogle Scholar
  2. Arcagni A (2017) On the decomposition by sources of the Zenga 1984 point and synthetic inequality indexes. Stat Methods Appl 26(1):113–133MathSciNetCrossRefzbMATHGoogle Scholar
  3. Arnold BC (2015) On Zenga and Bonferroni curves. Metron 73(1):25–30MathSciNetCrossRefzbMATHGoogle Scholar
  4. Arnold BC, Sarabia JM (2018) Majorization and the Lorenz order with applications in applied mathematics and economics. Springer, ChamCrossRefzbMATHGoogle Scholar
  5. Banca d’Italia (2015) Survey on household income and wealth in 2014, supplements to the statistical bulletin—sample surveys, XXV(64). http://www.bancaditalia.it
  6. Belzunce F, Candel J, Ruiz JM (1995) Ordering of truncated distributions through concentration curves. Sankhya Indian J Stat Ser A 57(3):375–383MathSciNetzbMATHGoogle Scholar
  7. Berti P, Rigo P (1995) A note on Zenga concentration index. J Ital Stat Soc 4(3):397–404CrossRefzbMATHGoogle Scholar
  8. Berti P, Rigo P (2014) Concentration curve and index, Zenga’s. In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds) Wiley StatsRef: statistics reference online.  https://doi.org/10.1002/9781118445112.stat03450
  9. Bertoli-Barsotti L (2001) Some remarks on Lorenz ordering-preserving functionals. Stat Methods Appl 10:99–112CrossRefzbMATHGoogle Scholar
  10. Bourguignon F (1979) Decomposable income inequality measures. Econometrica 47:901–920MathSciNetCrossRefzbMATHGoogle Scholar
  11. Brunazzo A (1987) Variazioni nel diagramma di concentrazione di M. Zenga. In: Zenga M (ed) La distribuzione personale del reddito: problemi di formazione, di ripartizione e di misurazione. Vita e pensiero, MilanoGoogle Scholar
  12. Dagum C (1997a) A new approach to the decomposition of the Gini income inequality ratio. Empir Econ 22(4):515–531CrossRefGoogle Scholar
  13. Dagum C (1997b) Scomposizione ed interpretazione della misura di disuguaglianza di Gini e di entropia generalizzata. Statistica 3:295–307Google Scholar
  14. Dancelli L (1990) On the behaviour of the \(Z(p)\) concentration curve. In: Income and wealth distribution, inequality and poverty. Springer, Berlin, pp 111–127Google Scholar
  15. Dancelli L (1989) Confronti fra le curve di concentrazione \(Z(p)\) e \(L(p)\) nel modello di Dagum. Stat Appl 4(1):399–415Google Scholar
  16. Ebert U (2010) The decomposition of inequality reconsidered: weakly decomposable measures. Math Soc Sci 60:94–103MathSciNetCrossRefzbMATHGoogle Scholar
  17. Fernandez MA, De Haro GJ, Martin RG (1996) Medicion de la desigualdad y el bienestar social. Analisis de la distribucion de la renta en España (1981–1991). Revista de Estudios Regionales 45:15–42Google Scholar
  18. Frosini BV (2012) Approximation and decomposition of Gini, Pietra-Ricci and Theil inequality measures. Empir Econ 43:175–197CrossRefGoogle Scholar
  19. Jedrzejczak A (2013) Asymptotic properties of some estimators for income inequality measures—a simulation study. In: Proceedings 59th ISI world statistics congress, CPS203Google Scholar
  20. Jedrzejczak A (2015) Asymptotic properties of some estimators for Gini and Zenga inequality measures: a simulation study. Stat Appl 13(2):143–162Google Scholar
  21. Jedrzejczak A, Kubacki J (2013) Estimation of income inequality and the poverty rate in Poland, by region and family type. Stat Transit New Ser 14(3):359–378Google Scholar
  22. Kleiber C, Kotz S (2003) Statistical size distributions in economics and actuarial sciences. Wiley, HobokenCrossRefzbMATHGoogle Scholar
  23. Lerman RI, Yitzhaki S (1984) A note on the calculation and the interpretation of the Gini index. Econ Lett 15(3–4):363–368CrossRefGoogle Scholar
  24. Lerman RI, Yitzhaki S (1985) Income inequality effects by income source: a new approach and applications to the United States. Rev Econ Stat 67(1):151–156CrossRefGoogle Scholar
  25. Mehran F (1975) A statistical analysis of income inequality based on a decomposition of the Gini index. In: Proceedings of the 40th session of the I.S.I. (Warsaw), vol 4, pp 145–150Google Scholar
  26. Mookherjee D, Shorrocks A (1982) A decomposition analysis of the trend in UK income inequality. Econ J 92(368):886–902CrossRefGoogle Scholar
  27. Mussard S (2004) The bidimensional decomposition of the Gini ratio. A case study: Italy. Appl Econ Lett 11:503–505CrossRefGoogle Scholar
  28. Pasquazzi L, Zenga M (2018) Components of Gini, Bonferroni and Zenga inequality indexes for EU income data. J Off Stat 34(1):1–32CrossRefGoogle Scholar
  29. Pollastri A (1987) La curva di concentrazione di Lorenz e di Zenga nella distribuzione log-normale generalizzata. Giornale degli Economisti e Annali di Econ 11–12:639–664Google Scholar
  30. Porro F, Zenga M (2014) The decomposition by subgroups of the inequality curve Z(p) and the inequality index \(\zeta \). In: Proceeding of the 47th scientific meeting of Italian statistical societyGoogle Scholar
  31. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
  32. Radaelli P (2010) On the decomposition by subgroups of the Gini index and Zenga’s uniformity and inequality indexes. Int Stat Rev 78:81–101CrossRefGoogle Scholar
  33. Radaelli P, Zenga M (2005) On the decomposition of the Gini’s mean difference and concentration ratio. Stat Appl 3(2):5–24Google Scholar
  34. Rao V (1969) Two decompositions of concentration ratio. J R Stat Soc Ser A (General) 132:418–425MathSciNetCrossRefGoogle Scholar
  35. Salvaterra T (1990) Comparisons among concentration curves and indexes in some empirical distributions. In: Income and wealth distribution, inequality and poverty. Springer, Berlin, pp 194–214Google Scholar
  36. Salvemini T (1939) Sugli indici di omofilia. Suppl Stat Nuovi Probl 5:105–115Google Scholar
  37. Shorroks A (1980) A class of additively decomposable inequality measures. Econometrica 48(3):613–626MathSciNetCrossRefGoogle Scholar
  38. Zenga M (1984) Proposta per un indice di concentrazione basato sui rapporti fra quantili di popolazione e quantili di reddito. Giornale degli Economisti e Annali di Economia 43(5–6):301–326Google Scholar
  39. Zenga M (1990) Concentration curves and concentration indexes derived from them. In: Dagum C, Zenga M (eds) Income and wealth distribution, inequality and poverty. Springer, BerlinGoogle Scholar
  40. Zenga M (1991a) Impiego delle tabelle di cograduazione per la determinazione dell’indice puntuale di concentrazione \(Z(p)\). Stat Appl 3:283–291Google Scholar
  41. Zenga M (1991b) L’indice \(Z(p)\) come misura della concentrazione locale. Giornale degli Economisti e Annali di Economia 50(3–4):151–161Google Scholar
  42. Zenga M (1993) Il principio dei trasferimenti e le misure puntuali e sintetiche di concentrazione. Statistica 53(4):647–660Google Scholar
  43. Zenga M (2013) Decomposition by sources of the Gini. Bonferroni and Zenga inequality indexes. Stat Appl 9:133–161Google Scholar
  44. Zenga M (2015) Joint decomposition by subpopulations and sources of the Zenga inequality index \(I(Y)\). Stat Appl 13(2):163–195Google Scholar
  45. Zenga M (2016a) On the decomposition by subpopulations of the point and synthetic Zenga (2007) inequality indexes. Metron 74:375–405MathSciNetCrossRefzbMATHGoogle Scholar
  46. Zenga M (2016b) Decomposition by subpopulations of the point and the synthetic Gini inequality indexes. Stat Appl 14(1):3–28MathSciNetzbMATHGoogle Scholar
  47. Zenga M, Valli I (2016) Decomposition by subpopulations of the point and synthetic Bonferroni inequality measures. Stat Appl 14(1):49–82Google Scholar
  48. Zenga M, Valli I (2017) Joint decomposition by subpopulations and sources of the point and synthetic Bonferroni inequality measures. Stat Appl 15(2):1–38Google Scholar
  49. Zenga M, Radaelli P, Zenga M (2012) Decomposition of Zenga’s inequality index by sources. Stat Appl 10:3–31zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Università degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations