Advertisement

Statistical Methods & Applications

, Volume 27, Issue 4, pp 605–608 | Cite as

Comments on “The power of monitoring: how to make the most of a contaminated multivariate sample”

  • L. A. García-Escudero
  • A. Gordaliza
  • C. Matrán
  • A. Mayo-Iscar
Original Paper

Abstract

These are comments on the invited paper “The power of monitoring: How to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony Atkinson and Aldo Corbellini.

Keywords

Clustering Robustness Monitoring 

Notes

Acknowledgements

Research partially supported by the Spanish Ministerio de Economía y Competitividad, Grant MTM2014-56235-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grant VA005P17.

References

  1. Cerioli A, García-Escudero LA, Mayo-Iscar A (2017) Riani M (2017) Finding the number of normal groups in model-based clustering via constrained likelihoods. J Comput Graph Stat.  https://doi.org/10.1080/10618600.2017.1390469
  2. Cerioli A, Riani M, Atkinson AC, Corbellini A (2018) The power of monitoring: how to make the most of a contaminated multivariate sample. Stat Methods Appl. https://doi.org/10.1007/s10260-017-0409-8
  3. Cuesta-Albertos JA, Gordaliza A, Matrán C (1997) Trimmed \(k\)-means: an attempt to robustify quantizers. Ann Stat 25:553–576MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cuesta-Albertos JA, Matrán C (2008) Robust estimation in the normal mixture model based on robust clustering. J R Stat Soc Ser B Stat Methodol 70:779–802MathSciNetCrossRefzbMATHGoogle Scholar
  5. Dotto F, Farcomeni A, García-Escudero LA, Mayo-Iscar A (2017) A reweighting approach to robust clustering. Stat Comput. https://doi.org/10.1007/s11222-017-9742-x
  6. Gallegos MT, Ritter G (2010) Using combinatorial optimization in model-based clustering under spurious outliers and cardinality constraints. Comput Stat Data Anal 54:637–654CrossRefzbMATHGoogle Scholar
  7. García-Escudero LA, Gordaliza A (2007) The importance of the scales in heterogeneous robust clustering. Comput Stat Data Anal 51:4403–4412MathSciNetCrossRefzbMATHGoogle Scholar
  8. García-Escudero LA, Gordaliza A, Matrán C (2003) Trimming tools in exploratory data analysis. J Comput Graph Stat 12:434–449MathSciNetCrossRefGoogle Scholar
  9. García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2008) A general trimming approach to robust cluster analysis. Ann Stat 36:1324–1345MathSciNetCrossRefzbMATHGoogle Scholar
  10. García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2011) Exploring the number of groups in robust model-based clustering. Stat Comput 21:585–599MathSciNetCrossRefzbMATHGoogle Scholar
  11. Neykov N, Filzmoser P, Dimova R, Neytchev P (2007) Robust fitting of mixtures using the trimmed likelihood estimator. Comput Stat Data Anal 52:299–308MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • L. A. García-Escudero
    • 1
  • A. Gordaliza
    • 1
  • C. Matrán
    • 1
  • A. Mayo-Iscar
    • 1
  1. 1.IMUVA and Departamento de Estadística e Investigación Operativa, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations