Advertisement

The Solutions of the Coupled Einstein-Maxwell Equations and Dilaton Equations

  • Rui-feng Zhang
  • Ya Gu
Article
  • 5 Downloads

Abstract

In this paper, we consider extremely charged static perfect fluid distributions with a dilaton field in the framework of general relativity. By using calculus of variations, we establish the existence theorem for the solutions of this important gravitational system. We show that there is a continuous family of smooth solutions realizing asymptotically flat space metrics.

Keywords

nonlinear elliptic equations the variational method the asymptotic estimates 

2000 MR Subject Classification

35J20 83C05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alvarenge, F., Batista, A., Fabris, J. Does quantum cosmology predict a constant dilatonic field. IJMPD, 14: 291–307 (2005)MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Cho, Y., Degura, Y., Shiraishi, K. Extremely charged static perfect fluid distributions with dilaton in curved spacetimes. Phys. Rev. D, 62: 084038 (2000)CrossRefGoogle Scholar
  3. [3]
    Gilbarg, D., Trudinger, N.S. Elliptic Partial Differential Equations of Second Order. Springer, Berlin and New York, 1997MATHGoogle Scholar
  4. [4]
    Hartle, J.B., Hawking, S.W. Solutions of the Einstein-Maxwell equations with many black holes. Commun. Math. Phys., 26: 87–101 (1972)MathSciNetCrossRefGoogle Scholar
  5. [5]
    Lemos, J.P.S., Zanchin, V.T. Class of exact solutions of Einstein’s field equations in higher dimensional spacetime, d ≥ 4: Majumdar-Papapetrou solutions. Phys. Rev. D, 71: 124021 (2005)MathSciNetCrossRefGoogle Scholar
  6. [6]
    Lemos, J.P.S., Zanchin, V.T. Gravitational magnetic monopoles and Majumdar-Papapetrou stars. J. Math. Phys., 47: 042504 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Lu, H.Q., Huang, Z.G., Fang, W., Zhang, K.F. Dark energy and dilaton cosmology. arXiv:hep-th/0409309v1, 2004Google Scholar
  8. [8]
    Majumdar, S.D. A class of exact solutions of Einstein’s field equations. Phys. Rev., 72: 390–398 (1947)MathSciNetCrossRefGoogle Scholar
  9. [9]
    Papapetrou, A. Spinning test-particles in general relativity (I). Proc. R. Soc. London, A: 51–191 (1947)Google Scholar
  10. [10]
    Piazza, F., Tsujikawa, S. Dilatonic ghost condensate as dark energy. JCAP, 7: 004 (2004)CrossRefGoogle Scholar
  11. [11]
    Skenderis, K. Black holes in strings theory. Lect. Notes Phys., 541: 325–364 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Spruck, J., Yang, Y. Charged cosmological dust solutions of the coupled Einstein and Maxwell equations. Discr. Cont. Dynam. Sys., 28: 567–589 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Weyl, H. Zur gravitationstheorie. Ann. Phys., 359: 117–145 (2006)CrossRefMATHGoogle Scholar
  14. [14]
    Yazadjiev, S.S. Charged perfect fluid configurations with a dilaton field. Mod. Phys. Lett. A, 20: 821–831 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Zhang, R., Gu, Y. Elliptic Equations Governing Extremely Charged Cosmological Dust Coupled with Dilaton. Nonlinear Analysis, 34: 41–51 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Contemporary MathematicsHenan UniversityKaifengChina
  2. 2.School of Mathematics and StatisticsHenan UniversityKaifengChina

Personalised recommendations