Advertisement

Publications mathématiques de l'IHÉS

, Volume 130, Issue 1, pp 111–185 | Cite as

Polyakov’s formulation of \(2d\) bosonic string theory

  • Colin Guillarmou
  • Rémi RhodesEmail author
  • Vincent Vargas
Article
  • 110 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ARS1]
    P. Albin, F. Rochon and D. Sher, Analytic torsion and R-torsion of Witt representations on manifolds with cusps, Duke Math. J., 167 (2018), 1883–1950. MathSciNetzbMATHGoogle Scholar
  2. [ARS2]
    P. Albin, F. Rochon and D. Sher, Resolvent, heat kernel and torsion under degeneration to fibered cusps, Mem. Am. Math. Soc., in press. Google Scholar
  3. [Al]
    O. Alvarez, Theory of strings with boundaries: Fluctuations, topology and quantum geometry, Nucl. Phys. B, 216 (1983), 125–184. MathSciNetGoogle Scholar
  4. [ADJ]
    J. Ambjorn, B. Durhuus and T. Jonsson, Quantum Geometry: a statistical field theory approach, Cambridge Monographs on Mathematical Physics, 2005. zbMATHGoogle Scholar
  5. [ABB]
    J. Ambjorn, J. Barkley and T. Budd, Roaming moduli space using dynamical triangulations, Nucl. Phys. B, 858 (2012), 267–292. MathSciNetzbMATHGoogle Scholar
  6. [BeKn]
    A. A. Belavin and V. G. Knizhnik, Algebraic geometry and the geometry of quantum strings, Phys. Lett. B, 168 (1986). MathSciNetzbMATHGoogle Scholar
  7. [BeCa]
    E. A. Bender and E. R. Canfield, The asymptotic number of rooted maps on a surface, J. Comb. Theory, Ser. A, 43 (1986), 244–257. MathSciNetzbMATHGoogle Scholar
  8. [Be]
    N. Berestycki, An elementary approach of Gaussian multiplicative chaos, Electron. Commun. Probab., 22 (2017) Google Scholar
  9. [BiFe]
    A. Bilal and F. Ferrari, Multi-Loop Zeta function regularization and spectral cutoff in curved spacetime, arXiv:1307.1689.
  10. [Bo]
    D. Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics, vol. 256, Birkhäuser Boston, Inc., Boston, 2007, xii+355 pp. zbMATHGoogle Scholar
  11. [Bu1]
    M. Burger, Asymptotics of small eigenvalues of Riemann surfaces, Bull. Am. Meteorol. Soc., 18 (1988), 39–40. MathSciNetzbMATHGoogle Scholar
  12. [Bu2]
    M. Burger, Small eigenvalues of Riemann surfaces and graphs, Math. Z., 205 (1990), 395–420. MathSciNetzbMATHGoogle Scholar
  13. [Cu]
    N. Curien, A glimpse of the conformal structure of random planar maps, Commun. Math. Phys., 333 (2015), 1417–1463. MathSciNetzbMATHGoogle Scholar
  14. [Da]
    F. David, Conformal Field Theories Coupled to 2-D Gravity in the Conformal Gauge, Mod. Phys. Lett. A, 3 (1988), 1651–1656. MathSciNetGoogle Scholar
  15. [DKRV]
    F. David, A. Kupiainen, R. Rhodes and V. Vargas, Liouville Quantum Gravity on the Riemann sphere, Commun. Math. Phys., 342 (2016), 869–907. MathSciNetzbMATHGoogle Scholar
  16. [DRV]
    F. David, R. Rhodes and V. Vargas, Liouville Quantum Gravity on complex tori, J. Math. Phys., 57, 022302 (2016). MathSciNetzbMATHGoogle Scholar
  17. [DhKu]
    E. D’Hoker and P. S. Kurzepa, 2-D quantum gravity and Liouville Theory, Mod. Phys. Lett. A, 5 (1990), 1411–1421. MathSciNetzbMATHGoogle Scholar
  18. [DhPh]
    E. D’Hoker and D. H. Phong, Multiloop amplitudes for the bosonic Polyakov string, Nucl. Phys. B, 269 (1986), 205–234. MathSciNetGoogle Scholar
  19. [DhPh2]
    E. D’Hoker and D. H. Phong, On determinants of Laplacians on Riemann surfaces, Commun. Math. Phys., 104 (1986), 537–545. MathSciNetzbMATHGoogle Scholar
  20. [DhPh3]
    E. D’Hoker and D. H. Phong, The geometry of string perturbation theory, Rev. Mod. Phys., 60 (1988), 917–1065. MathSciNetGoogle Scholar
  21. [dFMS]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Graduate Texts in Contemporary Physics, Springer, Berlin, 1997. zbMATHGoogle Scholar
  22. [DiKa]
    J. Distler and H. Kawai, Conformal Field Theory and 2-D Quantum Gravity or Who’s Afraid of Joseph Liouville? Nucl. Phys. B, 321 (1989), 509–517. Google Scholar
  23. [Du1]
    J. Dubédat, SLE and the Free Field: partition functions and couplings, J. Am. Math. Soc., 22 (2009), 995–1054. MathSciNetzbMATHGoogle Scholar
  24. [DuSh]
    B. Duplantier and S. Sheffield, Liouville Quantum Gravity and KPZ, Invent. Math., 185 (2011), 333–393. MathSciNetzbMATHGoogle Scholar
  25. [DRSV1]
    B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas, Critical Gaussian multiplicative chaos: convergence of the derivative martingale, Ann. Probab., 42 (2014), 1769–1808. MathSciNetzbMATHGoogle Scholar
  26. [DRSV2]
    B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas, Renormalization of Critical Gaussian Multiplicative Chaos and KPZ formula, Commun. Math. Phys., 330 (2014), 283–330. zbMATHGoogle Scholar
  27. [DMS]
    B. Duplantier, J. Miller and S. Sheffield, Liouville quantum gravity as a mating of trees, arXiv:1409.7055.
  28. [FKZ]
    F. Ferrari, S. Klevtsov and S. Zelditch, Random Kähler metrics, Nucl. Phys. B, 869 (2012), 89–110. zbMATHGoogle Scholar
  29. [Ga]
    K. Gawedzki, Lectures on conformal field theory, in Quantum fields and strings: A course for mathematicians, Vols. 1, 2, Princeton, NJ, 1996/1997, pp. 727–805, Amer. Math. Soc., Providence, 1999. Google Scholar
  30. [GuZw]
    L. Guillopé and M. Zworski, Upper bounds on the number of resonances for non-compact Riemann surfaces, J. Funct. Anal., 129 (1995), 364–389. MathSciNetzbMATHGoogle Scholar
  31. [HRV]
    Y. Huang, R. Rhodes and V. Vargas, Liouville quantum field theory in the unit disk, Ann. Inst. Henri Poincaré Probab. Stat., 54 (2018), 1694–1730. MathSciNetzbMATHGoogle Scholar
  32. [Ji]
    L. Ji, The asymptotic behavior of Green’s functions for degenerating hyperbolic surfaces, Math. Z., 212 (1993), 375–394. MathSciNetzbMATHGoogle Scholar
  33. [Ka]
    J-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Qué., 9 (1985), 105–150. MathSciNetzbMATHGoogle Scholar
  34. [Kleb]
    I. Klebanov, String theory in two dimensions, arXiv:hep-th/9108019.
  35. [KlZe]
    S. Klevtsov and S. Zelditch, Heat kernel measures on random surfaces, Adv. Theor. Math. Phys., 20 (2016), 135–164. MathSciNetzbMATHGoogle Scholar
  36. [KPZ]
    V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Fractal structure of 2D-quantum gravity, Mod. Phys. Lett. A, 3 (1988), 819–826. Google Scholar
  37. [MaMi]
    N. E. Mavromatos and J. L. Miramontes, Regularizing the functional integral in 2D-quantum gravity, Mod. Phys. Lett. A, 04 (1989), 1847–1853. Google Scholar
  38. [MeZh]
    R. B. Melrose and X. Zhu, Boundary behaviour of Weil–Petersson and fiber metrics for Riemann moduli spaces, Int. Math. Res. Not., rnx264 (2017).  https://doi.org/10.1093/imrn/rnx264. MathSciNetGoogle Scholar
  39. [Mi]
    G. Miermont, Tessellations of random maps of arbitrary genus, Ann. Sci. Ec. Norm. Super., 42 (2009), 725–781. MathSciNetzbMATHGoogle Scholar
  40. [OPS]
    B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal., 80 (1988), 148–211. MathSciNetzbMATHGoogle Scholar
  41. [Pa]
    S. J. Patterson, The Selberg zeta function of a Kleinian group, in Number Theory, Trace Formulas and Discrete Groups, pp. 409–441, Academic Press, Boston, 1989. Google Scholar
  42. [Pol]
    J. Polchinski, What is string theory? Lectures presented at the 1994 Les Houches Summer School “Fluctuating Geometries in Statistical Mechanics and Field Theory.” arXiv:hep-th/9411028.
  43. [Po]
    A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207. MathSciNetGoogle Scholar
  44. [RaSi]
    D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., 7 (1971), 145–210. MathSciNetzbMATHGoogle Scholar
  45. [RhVa1]
    R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review, Probab. Surv., 11 (2014), 315–392. MathSciNetzbMATHGoogle Scholar
  46. [RhVa2]
    R. Rhodes and V. Vargas, Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity, in Les Houches summer school proceedings, arXiv:1602.07323.
  47. [RoVa]
    R. Robert and V. Vargas, Gaussian multiplicative chaos revisited, Ann. Probab., 38 (2010), 605–631. MathSciNetzbMATHGoogle Scholar
  48. [Sa]
    P. Sarnak, Determinants of Laplacians, Commun. Math. Phys., 110 (1987), 113–120. MathSciNetzbMATHGoogle Scholar
  49. [SWY]
    R. Schoen, S. Wolpert and S. T. Yau, Geometric bounds on low eigenvalues of a compact Riemann surface, Geometry of the Laplace operator, in Proc. Sympos. Pure Math, vol. 36, pp. 279–285, AMS, Providence, 1980. Google Scholar
  50. [Sc]
    M. Schulze, On the resolvent of the Laplacian on functions for degenerating surfaces of finite geometry, J. Funct. Anal., 236 (2006), 120–160. MathSciNetzbMATHGoogle Scholar
  51. [Sha]
    A. Shamov, On Gaussian multiplicative chaos, J. Funct. Anal., 270, 3224–3261. MathSciNetzbMATHGoogle Scholar
  52. [She]
    S. Sheffield, Gaussian free fields for mathematicians, Probab. Theory Relat. Fields, 139 (2007), 521–541. MathSciNetzbMATHGoogle Scholar
  53. [TaTe]
    L. Takhtajan and L-P. Teo, Quantum Liouville Theory in the Background Field Formalism I. Compact Riemann Surfaces, Commun. Math. Phys., 268 (2006), 135–197. MathSciNetzbMATHGoogle Scholar
  54. [Tr]
    A. J. Tromba, Teichmüller theory in Riemannian Geometry, Lectures in Math., ETH Zürich, Birkhäuser Verlag, Basel, 1992. zbMATHGoogle Scholar
  55. [Wo1]
    S. Wolpert, On the Weil–Petersson geometry of the moduli space of curves, Am. J. Math., 107 (1985), 969–997. MathSciNetzbMATHGoogle Scholar
  56. [Wo2]
    S. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces, Commun. Math. Phys., 112 (1987), 283–315. MathSciNetzbMATHGoogle Scholar
  57. [Wo3]
    S. Wolpert, The hyperbolic metric and the geometry of the universal curve, J. Differ. Geom., 31 (1990), 417–472. MathSciNetzbMATHGoogle Scholar

Copyright information

© IHES and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Colin Guillarmou
    • 1
  • Rémi Rhodes
    • 2
    Email author
  • Vincent Vargas
    • 3
  1. 1.Département de Mathématiques, Université Paris-SudCNRSOrsayFrance
  2. 2.Aix Marseille UniversitéCNRSMarseilleFrance
  3. 3.DMA, U.M.R. 8553 CNRSÉcole Normale SuperieureParis cedex 05France

Personalised recommendations