Integral \(p\)-adic Hodge theory
- 79 Downloads
Abstract
We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of \(\mathbf {C}_{p}\). It takes values in a mixed-characteristic analogue of Dieudonné modules, which was previously defined by Fargues as a version of Breuil–Kisin modules. Notably, this cohomology theory specializes to all other known \(p\)-adic cohomology theories, such as crystalline, de Rham and étale cohomology, which allows us to prove strong integral comparison theorems.
The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor \(L\eta \) on the derived category, defined previously by Berthelot–Ogus. On affine pieces, our cohomology theory admits a relation to the theory of de Rham–Witt complexes of Langer–Zink, and can be computed as a \(q\)-deformation of de Rham cohomology.
Preview
Unable to display preview. Download preview PDF.
References
- 1.The Stacks Project, available at http://stacks.math.columbia.edu.
- 2.A. Abbes and M. Gros, Topos co-évanescents et généralisations, Annals of Mathematics Studies, vol. 193, 2015. Google Scholar
- 3.F. Andreatta and A. Iovita, Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu, 12 (2013), 77–151. MathSciNetCrossRefzbMATHGoogle Scholar
- 4.A. Beauville and Y. Laszlo, Un lemme de descente, C. R. Acad. Sci., Sér. 1 Math., 320 (1995), 335–340. MathSciNetzbMATHGoogle Scholar
- 5.P. Berthelot, Sur le “théorème de Lefschetz faible” en cohomologie cristalline, C. R. Acad. Sci. Paris, Sér. A-B, 277 (1973), A955–A958. zbMATHGoogle Scholar
- 6.P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1978. zbMATHGoogle Scholar
- 7.P. Berthelot and A. Ogus, \(F\)-isocrystals and de Rham cohomology. I, Invent. Math., 72 (1983), 159–199. MathSciNetCrossRefzbMATHGoogle Scholar
- 8.B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral \(p\)-adic Hodge theory, available at arXiv:1802.03261 [math.AG].
- 9.B. Bhatt, M. Morrow and P. Scholze, Integral \(p\)-adic Hodge theory—announcement, Math. Res. Lett., 22 (2015), 1601–1612. MathSciNetCrossRefzbMATHGoogle Scholar
- 10.B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation. Google Scholar
- 11.B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque, 369 (2015), 99–201. zbMATHGoogle Scholar
- 12.S. Bloch and K. Kato, \(p\)-adic étale cohomology, Publ. Math. IHÉS, 63 (1986), 107–152. CrossRefzbMATHGoogle Scholar
- 13.E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. \(p\). III, Invent. Math., 35 (1976), 197–232. MathSciNetCrossRefzbMATHGoogle Scholar
- 14.J. Borger, The basic geometry of Witt vectors, I: The affine case, Algebra Number Theory, 5 (2011), 231–285. MathSciNetCrossRefzbMATHGoogle Scholar
- 15.S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer, Berlin, 1984, A systematic approach to rigid analytic geometry. zbMATHGoogle Scholar
- 16.S. Bosch and W. Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann., 295 (1993), 291–317. MathSciNetCrossRefzbMATHGoogle Scholar
- 17.C. Breuil, Groupes \(p\)-divisibles, groupes finis et modules filtrés, Ann. Math., 152 (2000), 489–549. MathSciNetCrossRefzbMATHGoogle Scholar
- 18.O. Brinon, Représentations \(p\)-adiques cristallines et de de Rham dans le cas relatif, in Mém. Soc. Math. Fr. (N. S.), vol. 112, 2008, vi+159 pp. Google Scholar
- 19.X. Caruso, Conjecture de l’inertie modérée de Serre, Invent. Math., 171 (2008), 629–699. MathSciNetCrossRefzbMATHGoogle Scholar
- 20.P. Colmez and W. Nizioł, Syntomic complexes and \(p\)-adic nearby cycles, Invent. Math., 208 (2017), 1–108. MathSciNetCrossRefzbMATHGoogle Scholar
- 21.B. Conrad and O. Gabber, Spreading out of rigid-analytic varieties, in preparation. Google Scholar
- 22.C. Davis and K. S. Kedlaya, On the Witt vector Frobenius, Proc. Am. Math. Soc., 142 (2014), 2211–2226. MathSciNetCrossRefzbMATHGoogle Scholar
- 23.A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. IHÉS, 83 (1996), 51–93. MathSciNetCrossRefzbMATHGoogle Scholar
- 24.P. Deligne and L. Illusie, Relèvements modulo \(p^{2}\) et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247–270. MathSciNetCrossRefzbMATHGoogle Scholar
- 25.T. Ekedahl, Answer on Mathoverflow, http://mathoverflow.net/questions/21023/liftability-of-enriques-surfaces-from-char-p-to-zero.
- 26.R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., 6 (1973), 553–603. MathSciNetCrossRefzbMATHGoogle Scholar
- 27.G. Faltings, \(p\)-adic Hodge theory, J. Am. Math. Soc., 1 (1988), 255–299. MathSciNetzbMATHGoogle Scholar
- 28.G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Am. Math. Soc., 12 (1999), 117–144. MathSciNetCrossRefzbMATHGoogle Scholar
- 29.G. Faltings, Almost étale extensions, Cohomologies \(p\)-adiques et applications arithmétiques, II, Astérisque, 279 (2002), 185–270. zbMATHGoogle Scholar
- 30.L. Fargues, Quelques résultats et conjectures concernant la courbe, Astérisque, 369 (2015), 325–374. MathSciNetzbMATHGoogle Scholar
- 31.L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge \(p\)-adique, available at http://webusers.imj-prg.fr/~laurent.fargues/Courbe_fichier_principal.pdf.
- 32.J.-M. Fontaine, Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. Math., 115 (1982), 529–577. MathSciNetCrossRefzbMATHGoogle Scholar
- 33.J.-M. Fontaine, Perfectoïdes, presque pureté et monodromie-poids (d’après Peter Scholze), Astérisque, 352 (2013), 509–534, Exp. No. 1057, x. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058. zbMATHGoogle Scholar
- 34.J.-M. Fontaine and W. Messing, \(p\)-adic periods and \(p\)-adic étale cohomology, in Current Trends in Arithmetical Algebraic Geometry, Arcata, Calif., 1985, Contemp. Math., vol. 67, pp. 179–207, Am. Math. Soc., Providence, 1987. CrossRefGoogle Scholar
- 35.J.-M. Fontaine and Y. Ouyang, Theory of \(p\)-adic Galois representations, available at https://www.math.u-psud.fr/~fontaine/galoisrep.pdf.
- 36.O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal., 11 (2001), 1192–1200. MathSciNetCrossRefzbMATHGoogle Scholar
- 37.O. Gabber, L. Ramero, Almost Ring Theory, Lecture Notes in Mathematics, vol. 1800, Springer, Berlin, 2003, vi+307 pp. ISBN 3-540-40594-1. zbMATHGoogle Scholar
- 38.O. Gabber and L. Ramero, Foundations of almost ring theory, http://math.univ-lille1.fr/~ramero/hodge.pdf.
- 39.T. Geisser and L. Hesselholt, The de Rham-Witt complex and \(p\)-adic vanishing cycles, J. Am. Math. Soc., 19 (2006), 1–36. MathSciNetCrossRefzbMATHGoogle Scholar
- 40.L. Hesselholt, On the topological cyclic homology of the algebraic closure of a local field, in An Alpine Anthology of Homotopy Theory, Contemp. Math., vol. 399, pp. 133–162, Am. Math. Soc., Providence, 2006. CrossRefGoogle Scholar
- 41.R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z., 217 (1994), 513–551. MathSciNetCrossRefzbMATHGoogle Scholar
- 42.R. Huber, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, vol. E30, Vieweg, Braunschweig, 1996. CrossRefzbMATHGoogle Scholar
- 43.L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., 12 (1979), 501–661. CrossRefzbMATHGoogle Scholar
- 44.L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, 57 (1983), 73–212. CrossRefzbMATHGoogle Scholar
- 45.N. M. Katz, \(p\)-adic properties of modular schemes and modular forms, in Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, pp. 69–190, 1973. CrossRefGoogle Scholar
- 46.K. S. Kedlaya, Nonarchimedean geometry of Witt vectors, Nagoya Math. J., 209 (2013), 111–165. MathSciNetCrossRefzbMATHGoogle Scholar
- 47.K. S. Kedlaya, Some ring-theoretic properties of A_inf, arXiv:1602.09016.
- 48.K. S. Kedlaya and R. Liu, Relative \(p\)-adic Hodge theory: foundations, Astérisque, 371 (2015), 239. MathSciNetzbMATHGoogle Scholar
- 49.M. Kisin, Crystalline representations and \(F\)-crystals, in Algebraic Geometry and Number Theory, Progr. Math., vol. 253, pp. 459–496, Birkhäuser Boston, Boston, 2006. CrossRefGoogle Scholar
- 50.M. Kisin, Integral models for Shimura varieties of Abelian type, J. Am. Math. Soc., 23 (2010), 967–1012. MathSciNetCrossRefzbMATHGoogle Scholar
- 51.W. E. Lang, On Enriques surfaces in characteristic \(p\). I, Math. Ann., 265 (1983), 45–65. MathSciNetCrossRefzbMATHGoogle Scholar
- 52.A. Langer and T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, 3 (2004), 231–314. MathSciNetCrossRefzbMATHGoogle Scholar
- 53.C. Liedtke, Arithmetic moduli and lifting of Enriques surfaces, J. Reine Angew. Math., 706 (2015), 35–65. MathSciNetzbMATHGoogle Scholar
- 54.W. Lütkebohmert, Formal-algebraic and rigid-analytic geometry, Math. Ann., 286 (1990), 341–371. MathSciNetCrossRefzbMATHGoogle Scholar
- 55.B. Poonen, Bertini theorems over finite fields, Ann. Math., 160 (2004), 1099–1127. MathSciNetCrossRefzbMATHGoogle Scholar
- 56.M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., 13 (1971), 1–89. MathSciNetCrossRefzbMATHGoogle Scholar
- 57.M. Schlessinger, Functors of Artin rings, Trans. Am. Math. Soc., 130 (1968), 208–222. MathSciNetCrossRefzbMATHGoogle Scholar
- 58.P. Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 245–313. MathSciNetCrossRefzbMATHGoogle Scholar
- 59.P. Scholze, \(p\)-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, 1, e1, 77 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
- 60.P. Scholze, Perfectoid spaces: a survey, in Current Developments in Mathematics 2012, pp. 193–227, International Press, Somerville, 2013. Google Scholar
- 61.P. Scholze, \(p\)-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi, 4, e6, 4 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
- 62.P. Scholze and J. Weinstein, \(p\)-adic geometry, Lecture notes from course at UC Berkeley in Fall 2014, available at https://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.
- 63.F. Tan and J. Tong, Crystalline comparison isomorphisms in p-adic hodge theory: the absolutely unramified case, available at http://arxiv.org/abs/1510.05543.
- 64.T. Tsuji, \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., 137 (1999), 233–411. MathSciNetCrossRefzbMATHGoogle Scholar
- 65.W. van der Kallen, Descent for the \(K\)-theory of polynomial rings, Math. Z., 191 (1986), 405–415. MathSciNetCrossRefzbMATHGoogle Scholar