Clinical and Experimental Medicine

, Volume 18, Issue 4, pp 465–471 | Cite as

HCV-negative mixed cryoglobulinemia and kidney involvement: in-depth review on physiopathological and histological bases

  • Leonardo SpatolaEmail author
  • Elena Generali
  • Claudio Angelini
  • Salvatore Badalamenti
  • Carlo Selmi
Review Article


Type II mixed cryoglobulinemia without evidence of HCV infection but rather with renal involvement has been occasionally described. The pathogenesis of cryoglobulinemic kidney disease is most likely related to immune complex deposition including cryoglobulins, and cryoaggregation after cold exposure could play a pivotal role in clinical expression of cryoglobulinemia. In these cases, acute kidney injury and proteinuria remain the most frequent clinical expression of a cryoglobulinemic glomerulonephritis. Type II cryoglobulinemia with the laboratory finding of both monoclonal and polyclonal cryoglobulins is the most prevalent bio-humoral pattern among HCV-negative phenotypes with renal involvement, while type III cryoglobulinemia with polyclonal Ig is rare. Histological data in renal biopsies support the hypothesis that regardless of the HCV status cryoglobulinemia vasculitis share the same frequent pathological finding of membranoproliferative glomerulonephritides, but other histological patterns have also been observed in a minority of cases. In HCV-negative mixed cryoglobulinaemia, the paraneoplastic origin of the immune dysfunction should be ruled out and sporadic cases have been reported, while there is no cumulative evidence on the prevalence of these tumour-associated manifestations. Moving from the classification criteria and the etiopathogenesis of mixed cryoglobulinaemia, we provide a comprehensive review of the literature on the appearance of the disease with kidney injury in association with malignancies or autoimmune disorders without HCV coexistence.


HCV-negative mixed cryoglobulinaemia HCV-negative cryoglobulinemic glomerulonephritis Type II cryoglobulinaemia Mixed cryoglobulinaemia Membranoproliferative glomerulonephritis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors and informed consent is not a standard required.


  1. 1.
    Desbois AC, et al. Cryoglobulinemia vasculitis: how to handle. Curr Opin Rheumatol. 2017;29(4):343–7.CrossRefGoogle Scholar
  2. 2.
    Sargur R, White P, Egner W. Cryoglobulin evaluation: best practice? Ann Clin Biochem. 2010;47(Pt 1):8–16.CrossRefGoogle Scholar
  3. 3.
    Brouet JC, et al. Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med. 1974;57(5):775–88.CrossRefGoogle Scholar
  4. 4.
    Gulli F, et al. Cryoglobulin test and cryoglobulinemia hepatitis C-virus related. mediterr J Hematol Infect Dis. 2017;9(1):e2017007.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Trendelenburg M, Schifferli JA. Cryoglobulins in chronic hepatitis C virus infection. Clin Exp Immunol. 2003;133(2):153–5.CrossRefGoogle Scholar
  6. 6.
    Motyckova G, Murali M. Laboratory testing for cryoglobulins. Am J Hematol. 2011;86(6):500–2.CrossRefGoogle Scholar
  7. 7.
    Musset L, et al. Characterization of cryoglobulins by immunoblotting. Clin Chem. 1992;38(6):798–802.PubMedGoogle Scholar
  8. 8.
    Tissot JD, et al. Clinical implications of the types of cryoglobulins determined by two-dimensional polyacrylamide gel electrophoresis. Haematologica. 1998;83(8):693–700.PubMedGoogle Scholar
  9. 9.
    Pontet F, et al. Biclonal immunoglobulin M dysglobulinaemia: evolving aspects in a case of primary Sjogren’s syndrome. Eur J Clin Chem Clin Biochem. 1997;35(4):287–90.PubMedGoogle Scholar
  10. 10.
    Casato M, et al. Cryoglobulinaemia and hepatitis C virus. Lancet. 1991;337(8748):1047–8.CrossRefGoogle Scholar
  11. 11.
    Durand JM, et al. Cutaneous vasculitis and cryoglobulinaemia type II associated with hepatitis C virus infection. Lancet. 1991;337(8739):499–500.CrossRefGoogle Scholar
  12. 12.
    Cacoub P, et al. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidepartment virus C. Arthritis Rheum. 1999;42(10):2204–12.CrossRefGoogle Scholar
  13. 13.
    Trejo O, et al. Cryoglobulinemia: study of etiologic factors and clinical and immunologic features in 443 patients from a single center. Medicine (Baltimore). 2001;80(4):252–62.CrossRefGoogle Scholar
  14. 14.
    Ferri C. Mixed cryoglobulinemia. Orphanet J Rare Dis. 2008;3:25.CrossRefGoogle Scholar
  15. 15.
    Galli M, Sollima S, Monti G. HCV-negative mixed cryoglobulinemia: facts and fancies. HCV infection and cryoglobulinemia. Milan: Springer; 2012. p. 239–43.CrossRefGoogle Scholar
  16. 16.
    Saadoun D, et al. Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia. Arch Intern Med. 2006;166(19):2101–8.CrossRefGoogle Scholar
  17. 17.
    Tervaert JW, Van Paassen P, Damoiseaux J. Type II cryoglobulinemia is not associated with hepatitis C infection: the Dutch experience. Ann N Y Acad Sci. 2007;1107:251.CrossRefGoogle Scholar
  18. 18.
    Andersen BR, et al. Biological and physical properties of a human m-cryoglobulin and its monomer subunit. Clin Exp Immunol. 1971;9(6):795–807.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kallemuchikkal U, Gorevic PD. Evaluation of cryoglobulins. Arch Pathol Lab Med. 1999;123(2):119–25.PubMedGoogle Scholar
  20. 20.
    Levo Y. Nature of cryoglobulinaemia. Lancet. 1980;1(8163):285–7.CrossRefGoogle Scholar
  21. 21.
    Middaugh CR, et al. Molecular basis of the temperature dependent insolubility of cryoglobulins—IV. Structural studies of the IgM monoclonal cryoglobulin. Immunochemistry. 1987;15:171–87.CrossRefGoogle Scholar
  22. 22.
    Lawson EQ, et al. Kinetics of the precipitation of cryoimmunoglobulins. Mol Immunol. 1987;24(9):897–905.CrossRefGoogle Scholar
  23. 23.
    Podell DN, et al. Characterization of monoclonal IgG cryoglobulins: fine-structural and morphological analysis. Blood. 1987;69(2):677–81.PubMedGoogle Scholar
  24. 24.
    Sansonno D, Dammacco F. Hepatitis C virus, cryoglobulinaemia, and vasculitis: immune complex relations. Lancet Infect Dis. 2005;5(4):227–36.CrossRefGoogle Scholar
  25. 25.
    Terrier B, et al. Management of noninfectious mixed cryoglobulinemia vasculitis: data from 242 cases included in the CryoVas survey. Blood. 2012;119(25):5996–6004.CrossRefGoogle Scholar
  26. 26.
    Spatola L, et al. HCV-negative mixed cryoglobulinemic glomeruolonephritis and solid malignancy: a case report and review of the literature. Nephro-Urol Mon. 2017. Scholar
  27. 27.
    Terrier B, et al. Prognostic factors of survival in patients with non-infectious mixed cryoglobulinaemia vasculitis: data from 242 cases included in the CryoVas survey. Ann Rheum Dis. 2013;72(3):374–80. Scholar
  28. 28.
    Galli M, et al. HCV-unrelated cryoglobulinaemic vasculitis: the results of a prospective observational study by the Italian Group for the Study of Cryoglobulinaemias (GISC). Clin Exp Rheumatol. 2017;35 Suppl 103(1):67–76.PubMedGoogle Scholar
  29. 29.
    Visentini M, et al. Hepatitis B virus causes mixed cryoglobulinaemia by driving clonal expansion of innate B-cells producing a VH1-69-encoded antibody. Clin Exp Rheumatol. 2016;34(3 Suppl 97):S28–32.PubMedGoogle Scholar
  30. 30.
    Rullier P, Le Quellec A, Cognot C. Cryoglobulins not HCV-related and solid tumors: retrospective analysis from a series of 493 patients. Eur J Intern Med. 2009;20(8):e158.CrossRefGoogle Scholar
  31. 31.
    Milas-Ahic J, et al. Cryoglobulinemicvasculitis as a manifestation of paraneoplastic syndrome—a case report. Reumatizam. 2015;62(1):27–30.PubMedGoogle Scholar
  32. 32.
    Lundberg WB, Mitchell MS. Transient warm autoimmune hemolytic anemia and cryoglobulinemia associated with seminoma. Yale J Biol Med. 1977;50(4):419–27.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Visentini M, et al. Late relapses of hepatitis C virus-cured mixed cryoglobulinaemia associated with infection or cancer. Rheumatology (Oxford). 2018. Scholar
  34. 34.
    Matignon M, et al. Clinical and morphologic spectrum of renal involvement in patients with mixed cryoglobulinemia without evidence of hepatitis C virus infection. Medicine (Baltimore). 2009;88(6):341–8.CrossRefGoogle Scholar
  35. 35.
    D’Amico G, et al. Renal involvement in essential mixed cryoglobulinemia. Kidney Int. 1989;35(4):1004–14.CrossRefGoogle Scholar
  36. 36.
    El-Serag HB, et al. Extrahepatic manifestations of hepatitis C among United States male veterans. Hepatology. 2002;36(6):1439–45.CrossRefGoogle Scholar
  37. 37.
    Fabrizi F, et al. Kidney and liver involvement in cryoglobulinemia. Semin Nephrol. 2002;22(4):309–18.PubMedGoogle Scholar
  38. 38.
    Okura T, et al. Case of membranoproliferative glomerulonephritis due to essential cryoglobulinemia without hepatitis C virus infection. Geriatr Gerontol Int. 2009;9(1):92–6.CrossRefGoogle Scholar
  39. 39.
    Zaidan M, et al. Spectrum and prognosis of noninfectious renal mixed cryoglobulinemic GN. J Am Soc Nephrol. 2016;27(4):1213–24.CrossRefGoogle Scholar
  40. 40.
    Di Stasio E, et al. Cl-regulates cryoglobulin structure: a new hypothesis for the physiopathological mechanism of temperature non-dependent cryoprecipitation. Clin Chem Lab Med. 2004;42(6):614–20.CrossRefGoogle Scholar
  41. 41.
    Qi M, Steiger G, Schifferli JA. A calcium-dependent cryoglobulin IgM kappa/polyclonal IgG. J Immunol. 1992;149(7):2345–51.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit of NephrologyHumanitas Clinical and Research CenterRozzanoItaly
  2. 2.Unit of Rheumatology and Clinical ImmunologyHumanitas Clinical and Research CenterRozzanoItaly
  3. 3.BIOMETRA DepartmentUniversity of MilanMilanItaly

Personalised recommendations