Advertisement

The influence of an extra-articular implant on bone remodelling of the knee joint

  • Mehdi Saeidi
  • José Eduardo Gubaua
  • Piaras KellyEmail author
  • Mousa Kazemi
  • Thor Besier
  • Gabriela Wessling Oening Dicati
  • Jucélio Tomás Pereira
  • Thomas Neitzert
  • Maziar Ramezani
Original Paper

Abstract

Bone remodelling is a crucial feature of maintaining healthy bones. The loading conditions on the bones are one of the key aspects which affect the bone remodelling cycle. Many implants, such as hip and knee implants, affect the natural loading conditions and hence influence bone remodelling. Theoretical and numerical methods, such as adaptive bone remodelling, can be used to investigate how an implant affects bone mineral density (BMD). This research aimed to study the influence of an extra-articular implant on bone remodelling of the knee joint using adaptive bone remodelling. Initially, a finite element (FE) model of the knee joint was created. A user-defined material subroutine was developed to generate a heterogeneous BMD distribution in the FE model. The heterogeneous density was then assigned to the knee model with the implant in order to investigate how the implant would affect BMD of the knee joint, five years postoperatively. It was observed that in the medial compartments of the femur and tibia, bone mineral density increased by approximately 3.4% and 4.1%, respectively, and the density for the fixation holes of both bones increased by around 2.2%. From these results, it is concluded that implanting of this load-sharing device does not result in significantly adverse BMD changes in the femur and tibia.

Keywords

Bone remodelling Implant Knee Mechanostat Osteoarthritis Stress shielding 

Notes

Acknowledgements

The authors would like to thank Dr. Frank Richter for his assistance regarding the principles of UMAT subroutines for bone remodelling purposes. J.E. Gubaua and G.W.O. Dicati would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their support.

References

  1. Bagge M (1999) Remodeling of bone structures. PhD Thesis, Technical University of Denmark, DenmarkGoogle Scholar
  2. Behari J (2009) Biophysical bone behaviour: principles and applications. Wiley, New YorkCrossRefGoogle Scholar
  3. Besier TF, Draper CE, Gold GE, Beaupré GS, Delp SL (2005) Patellofemoral joint contact area increases with knee flexion and weight-bearing. J Orthop Res 23:345–350CrossRefGoogle Scholar
  4. Bugbee WD, Culpepper WJ, Engh CA, Engh CA (1997) Long-term clinical consequences of stress-shielding after total hip arthroplasty without cement. J Bone Joint Surg 79:1007–1012CrossRefGoogle Scholar
  5. Chen G, Pettet G, Pearcy M, McElwain D (2007) Comparison of two numerical approaches for bone remodelling. Med Eng Phys 29:134–139CrossRefGoogle Scholar
  6. Clifford AG, Gabriel SM, O’Connell M, Lowe D, Miller LE, Block JE (2013) The KineSpring (®) Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis. Med Dev Evid Res 6:69–76Google Scholar
  7. Doblaré M, Garcia J (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17CrossRefGoogle Scholar
  8. Garcia-Aznar JM, Rüberg T, Doblare M (2005) A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity. Biomech Model Mechanobiol 4:147–167CrossRefGoogle Scholar
  9. Gibbons C, Davies A, Amis A, Olearnik H, Parker B, Scott J (2001) Periprosthetic bone mineral density changes with femoral components of differing design philosophy. Int Orthop 25:89–92CrossRefGoogle Scholar
  10. Gislason MK, Ingvarsson P, Gargiulo P, Yngvason S, Guðmundsdóttir V, Knútsdóttir S et al (2014) Finite element modelling of the femur bone of a subject suffering from motor neuron lesion subjected to electrical stimulation. Eur J Transl Myol 24:187–193CrossRefGoogle Scholar
  11. Greenwald A, Haynes D (1972) Weight-bearing areas in the human hip joint. J Bone Joint Surg Br 54:157–163CrossRefGoogle Scholar
  12. Hall SJ (2014) Basic biomechanics. McGraw-Hill Higher Education, New YorkGoogle Scholar
  13. Harrysson OL, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28:366–373CrossRefGoogle Scholar
  14. Huiskes R, Weinans H, Dalstra M (1989) Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics 12:1255–1267Google Scholar
  15. Huiskes R, Weinans H, Van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 274:124–134Google Scholar
  16. Jacobs CR, Levenston ME, Beaupré GS, Simo JC, Carter DR (1995) Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. J Biomech 28:449–451CrossRefGoogle Scholar
  17. Jia Z, Gong H, Hu S, Fang J, Fan R (2017) Influence of design features of tibial stems in total knee arthroplasty on tibial bone remodeling behaviors. Med Eng Phys 48:103–113CrossRefGoogle Scholar
  18. Joshi MG, Advani SG, Miller F, Santare MH (2000) Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomech 33:1655–1662CrossRefGoogle Scholar
  19. Kelly P (2015) Mechanics lecture notes: an introduction to solid mechanics. University of Auckland, AucklandGoogle Scholar
  20. Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRefGoogle Scholar
  21. Kowalczyk P (2010) Simulation of orthotropic microstructure remodelling of cancellous bone. J Biomech 43:563–569CrossRefGoogle Scholar
  22. Kubíček M, Florian Z (2009) Stress strain analysis of knee joint. Eng Mech 16:315–322Google Scholar
  23. Kumar P (2010) Knee prosthesis. In: Patent U, editor: Google PatentsGoogle Scholar
  24. Kwon JY, Naito H, Matsumoto T, Tanaka M (2013) Estimation of change of bone structures after total hip replacement using bone remodeling simulation. Clin Biomech 28:514–518CrossRefGoogle Scholar
  25. Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309MathSciNetCrossRefGoogle Scholar
  26. Lerner U (2016) Bone remodeling in post-menopausal osteoporosis. J Dent Res 7:584–595Google Scholar
  27. Levadnyi I, Awrejcewicz J, Gubaua JE, Pereira JT (2017) Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs. Clin Biomech 50:122–129CrossRefGoogle Scholar
  28. Martin R (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10:179–222Google Scholar
  29. Martin R (2000) Toward a unifying theory of bone remodeling. Bone 26:1–6CrossRefGoogle Scholar
  30. Martin RB, Burr DB, Sharkey NA, Fyhrie DP (2015) Skeletal tissue mechanics. Springer, New YorkGoogle Scholar
  31. Martínez-Reina J, Ojeda J, Mayo J (2016) On the use of bone remodelling models to estimate the density distribution of bones. Uniqueness of the solution. PLoS ONE 11:1–17Google Scholar
  32. Miller MD, Wiesel SW (2012) Operative techniques in sports medicine surgery. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  33. Nagels J, Stokdijk M, Rozing PM (2003) Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg 12:35–39CrossRefGoogle Scholar
  34. Pereira AF, Javaheri B, Pitsillides A, Shefelbine S (2015) Predicting cortical bone adaptation to axial loading in the mouse tibia. J R Soc Interface 12:1–14CrossRefGoogle Scholar
  35. Peter B, Ramaniraka N, Rakotomanana L, Zambelli P, Pioletti DP (2004) Peri-implant bone remodeling after total hip replacement combined with systemic alendronate treatment: a finite element analysis. Comput Methods Biomech Biomed Eng 7:73–78CrossRefGoogle Scholar
  36. Petersen MM, Olsen C, Lauritzen JB, Lund B (1995) Changes in bone mineral density of the distal femur following uncemented total knee arthroplasty. J Arthroplasty 10:7–11CrossRefGoogle Scholar
  37. Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA et al (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263CrossRefGoogle Scholar
  38. Quilez MP, Seral B, Pérez MA (2017) Biomechanical evaluation of tibial bone adaptation after revision total knee arthroplasty: a comparison of different implant systems. PLoS ONE 12:1–14CrossRefGoogle Scholar
  39. Rahmy A, Gosens T, Blake G, Tonino A, Fogelman I (2004) Periprosthetic bone remodelling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15:281–289CrossRefGoogle Scholar
  40. Saeidi M, Ramezani M, Kelly P, Neitzert T, Kumar P (2019) Preliminary study on a novel minimally invasive extra-articular implant for unicompartmental knee osteoarthritis. Med Eng Phys 67:96–101CrossRefGoogle Scholar
  41. Scannell PT, Prendergast PJ (2009) Cortical and interfacial bone changes around a non-cemented hip implant: simulations using a combined strain/damage remodelling algorithm. Med Eng Phys 31:477–488CrossRefGoogle Scholar
  42. Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput Methods Appl Mech Eng 254:181–196MathSciNetCrossRefzbMATHGoogle Scholar
  43. Sievänen H, Oja P, Vuori I (1992) Precision of dual-energy x-ray absorptiometry in determining bone mineral density and content of various skeletal sites. J Nucl Med 33:1137–1142Google Scholar
  44. Soffiatti BB, Gubaua JE, Dicati GWO, Pereira JT (2017a) Checkerboard control in 3D analysis of bone remodelling. In: XXXVIII Iberian Latin-American congress on computational methods in engineering (CILAMCE 2017), BrazilGoogle Scholar
  45. Soffiatti BB, Gubaua JE, Dicati GWO, Pereira JT (2017b) Analysis of temporal parameter for Stanford isotropic bone remodeling model for improvement of data processing. In: XXXVIII Iberian Latin-American congress on computational methods in engineering (CILAMCE 2017), BrazilGoogle Scholar
  46. Soffiatti BB, Gubaua JE, Dicati GWO, Pereira JT (2017c) Checkerboard control in 3D analysis of bone remodelling. In: XXXVIII Iberian Latin-American congress on computational methods in engineering, BrazilGoogle Scholar
  47. Thambyah A, Fernandez J (2014) Squatting-related tibiofemoral shear reaction forces and a biomechanical rationale for femoral component loosening. Sci world J 2014:1–7CrossRefGoogle Scholar
  48. Tuncer M, Patel R, Cobb JP, Hansen UN, Amis AA (2015) Variable bone mineral density reductions post-unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 23:2230–2236CrossRefGoogle Scholar
  49. Van Lenthe G, Malefijt W, Huiskes R (1997) Stress shielding after total knee replacement may cause bone resorption in the distal femur. J Bone Joint Surg 79B:117–122Google Scholar
  50. Wang C-J, Wang J-W, Weng L-H, Hsu C-C, Huang C-C, Chen H-S (2003) The effect of alendronate on bone mineral density in the distal part of the femur and proximal part of the tibia after total knee arthroplasty. J Bone Joint Surg 85:2121–2126CrossRefGoogle Scholar
  51. Wang Y, Fan Y, Zhang M (2014) Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys 36:439–447CrossRefGoogle Scholar
  52. Weinans H, Huiskes R, Grootenboer H (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25:1425–1441CrossRefGoogle Scholar
  53. Wiegant K (2015) Knee joint distraction: intrinsic cartilage repair and sustained clinical benefit. Utrecht University, NetherlandsGoogle Scholar
  54. Yao J, Snibbe J, Maloney M, Lerner AL (2006) Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image-based experimental validation. J Biomech Eng 128:135–141CrossRefGoogle Scholar
  55. Zhang M, Fan Y (2014) Computational biomechanics of the musculoskeletal system. CRC Press, FloridaCrossRefGoogle Scholar
  56. Zhang J, Sorby H, Clement J, Thomas CDL, Hunter P, Nielsen P et al (2014) The MAP client: user-friendly musculoskeletal modelling workflows. In: International symposium on biomedical simulation. Springer, Strasbourg, France, pp 182–192Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mehdi Saeidi
    • 1
  • José Eduardo Gubaua
    • 2
  • Piaras Kelly
    • 3
    Email author
  • Mousa Kazemi
    • 4
  • Thor Besier
    • 3
    • 4
  • Gabriela Wessling Oening Dicati
    • 2
  • Jucélio Tomás Pereira
    • 2
  • Thomas Neitzert
    • 1
  • Maziar Ramezani
    • 1
  1. 1.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Laboratory of Computational Solid MechanicsFederal University of ParanáCuritibaBrazil
  3. 3.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand
  4. 4.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand

Personalised recommendations