Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 4, pp 1095–1109 | Cite as

Shear stress in the microvasculature: influence of red blood cell morphology and endothelial wall undulation

  • Brenna Hogan
  • Zaiyi Shen
  • Hengdi Zhang
  • Chaouqi Misbah
  • Abdul I. BarakatEmail author
Original Paper
  • 208 Downloads

Abstract

The effect of red blood cells and the undulation of the endothelium on the shear stress in the microvasculature is studied numerically using the lattice Boltzmann–immersed boundary method. The results demonstrate a significant effect of both the undulation of the endothelium and red blood cells on wall shear stress. Our results also reveal that morphological alterations of red blood cells, as occur in certain pathologies, can significantly affect the values of wall shear stress. The resulting fluctuations in wall shear stress greatly exceed the nominal values, emphasizing the importance of the particulate nature of blood as well as a more realistic description of vessel wall geometry in the study of hemodynamic forces. We find that within the channel widths investigated, which correspond to those found in the microvasculature, the inverse minimum distance normalized to the channel width between the red blood cell and the wall is predictive of the maximum wall shear stress observed in straight channels with a flowing red blood cell. We find that the maximum wall shear stress varies several factors more over a range of capillary numbers (dimensionless number relating strength of flow to membrane elasticity) and reduced areas (measure of deflation of the red blood cell) than the minimum wall shear stress. We see that waviness reduces variation in minimum and maximum shear stresses among different capillary and reduced areas.

Keywords

Hemodynamic forces Shear stress Endothelium Red blood cells 

Notes

Acknowledgements

Brenna Hogan is supported by a doctoral fellowship from Ecole Polytechnique. This research is funded in part by a permanent endowment in Cardiovascular Cellular Engineering from the AXA Research Fund, the Centre National d’Etudes Spatiales (CNES), and the French–German university program (Living Fluids, Grant CFDA-Q1-14).

References

  1. Aarts PAMM, Heethaar RM, Sixma JJ (1984) Red blood cell deformability influences platelets-vessel wall interaction in flowing blood. Blood 64(6):1228–1233Google Scholar
  2. Bagchi P (2007) Mesoscale simulation of blood flow in small vessels. Biophys J 92(6):1858–1877CrossRefGoogle Scholar
  3. Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M (1987) Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood 70(1):152–157Google Scholar
  4. Barakat AI (1999) Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review). Int J Mol Med 4:323–332Google Scholar
  5. Barbee KA, Davies PF, Lal R (1994) Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Cardiovasc Res 74:163–171Google Scholar
  6. Barbee KA, Mundel T, Lal R, Davies PF (1995) Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am J Physiol Heart Circ Physiol 268(4):H1765–H1772CrossRefGoogle Scholar
  7. Baskurt OK (2012) Red blood cell mechanical stability. In: 2012 world congress on engineering and technology, Oct 2012, pp 8–10Google Scholar
  8. Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452–3459CrossRefzbMATHGoogle Scholar
  9. Chtcheglova LA, Wildling L, Waschke J, Drenckhahn D, Afm PH (2010) AFM functional imaging on vascular endothelial cells. J Mol Recognit 23(6):589CrossRefGoogle Scholar
  10. Culver JC, Dickinson ME (2010) The effects of hemodynamic force on embryonic development. Microcirculation 17(3):164–178CrossRefGoogle Scholar
  11. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75(3):519–560CrossRefGoogle Scholar
  12. Diez-Silva M, Dao M, Han J, Lim C-T, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull/Mater Res Soc 35(5):382–388CrossRefGoogle Scholar
  13. Dondorp AM, Pongponratn E, White NJ (2004) Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89(3):309–317CrossRefGoogle Scholar
  14. Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011a) Quantifying the biophysical characteristics of Plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci 108(1):35–39CrossRefGoogle Scholar
  15. Fedosov DA, Caswell B, Karniadakis GE (2011b) Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J 100(9):2084–2093CrossRefGoogle Scholar
  16. Freund JB, Vermot J (2014) The wall-stress footprint of blood cells flowing in microvessels. Biophys J 106(3):752–762CrossRefGoogle Scholar
  17. García-Cardeña G, Slegtenhorst BR (2016) Hemodynamic control of endothelial cell fates in development. Ann Rev Cell Dev Biol 6(32):633–648CrossRefGoogle Scholar
  18. Ghigliotti G, Selmi H, El Asmi L, Misbah C (2012) Why and how does collective red blood cells motion occur in the blood microcirculation? Phys Fluids 24:10CrossRefzbMATHGoogle Scholar
  19. Hahn C, Schwartz MA (2009) Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol 10(1):53–62CrossRefGoogle Scholar
  20. Kaoui B, Harting J, Misbah C (2011) Two-dimensional vesicle dynamics under shear flow: effect of confinement. Phys Rev E Stat Nonlinear Soft Matter Phys 83:6CrossRefGoogle Scholar
  21. Kroll MH, David HJ, McIntire LV, Schafer AI, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1542Google Scholar
  22. Krüger T, Varnik F, Raabe D (2009) Shear stress in lattice Boltzmann simulations. Phys Rev E 79(4):1–15CrossRefGoogle Scholar
  23. Namgung B, Ong PK, Johnson PC, Kim S (2011) Effect of cell-free layer variation on arteriolar wall shear stress. Ann Biomed Eng 39(1):359–366CrossRefGoogle Scholar
  24. Oberleithner H, Ludwig T, Riethmüller C, Hillebrand U, Albermann L, Schäfer C, Shahin V, Schillers H (2004) Human endothelium: target for aldosterone. Hypertension 43(5):952–956CrossRefGoogle Scholar
  25. Oulaid O, Zhang J (2015) Temporal and spatial variations of wall shear stress in the entrance region of microvessels. J Biomech Eng 137(6):061008CrossRefGoogle Scholar
  26. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517MathSciNetCrossRefzbMATHGoogle Scholar
  27. Pontrelli G, König CS, Halliday I, Spencer TJ, Collins MW, Long Q, Succi S (2011) Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile. Med Eng Phys 33(7):832–839CrossRefGoogle Scholar
  28. Roman BL, Pekkan K (2015) Mechanotransduction in embryonic vascular development. Biomech Model Mechanobiol 11(8):1149–1168CrossRefGoogle Scholar
  29. Rorai C, Touchard A, Zhu L, Brandt L (2015) Motion of an elastic capsule in a constricted microchannel. Eur Phys J E Soft Matter 38(5):134CrossRefGoogle Scholar
  30. Satcher RL, Bussolari SR, Gimbrone MA Jr, Dewey CF Jr (1992) The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J Biomech Eng 114:309–316CrossRefGoogle Scholar
  31. Shen Z, Farutin A, Thiébaud M, Misbah C (2017) Interaction and rheology of vesicle suspensions in confined shear flow. Phys Rev Fluids 2(10):103101CrossRefGoogle Scholar
  32. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordzbMATHGoogle Scholar
  33. Tahiri N, Biben T, Ez-Zahraouy H, Benyoussef A, Misbah C (2013) On the problem of slipper shapes of red blood cells in the microvasculature. Microvasc Res 85:40–45CrossRefGoogle Scholar
  34. Tsubota KI, Wada S (2010) Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell. Phys Rev E Stat Nonlinear Soft Matter Phys 81:1CrossRefGoogle Scholar
  35. Tsubota K, Wada S, Yamaguchi T (2006) Particle method for computer simulation of red blood cell motion in blood flow. Comput Methods Programs Biomed 83(2):139–146CrossRefGoogle Scholar
  36. Uzarski JS, Scott EW, Mcfetridge PS (2013) Adaptation of endothelial cells to physiologically-modeled, variable shear stress. PLoS ONE 8:2CrossRefGoogle Scholar
  37. Vlahovska PM, Podgorski T, Misbah C (2009) Vesicles and red blood cells in flow: from individual dynamics to rheology. C R Phys 10(8):775–789CrossRefGoogle Scholar
  38. Vlahovska PM, Barthes-Biesel D, Misbah C (2013) Flow dynamics of red blood cells and their biomimetic counterparts. C R Phys 14(6):451–458CrossRefGoogle Scholar
  39. Wu T, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: passage and blockage. Biomicrofluidics 7(4):1–18MathSciNetCrossRefGoogle Scholar
  40. Xiong W, Zhang J (2010) Shear stress variation induced by red blood cell motion in microvessel. Ann Biomed Eng 38(8):2649–2659CrossRefGoogle Scholar
  41. Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Sun Y (2018) Stiffness increase of red blood cells during storage. Microsyst Nanoeng 4:17103 March 2017CrossRefGoogle Scholar
  42. Ye T, Phan-Thien N, Khoo B, Lim CT (2014) Numerical modelling of a healthy/malaria-infected erythrocyte in shear flow using dissipative particle dynamics method. J Appl Phys 115:224701CrossRefGoogle Scholar
  43. Ye T, Phan-Thien N, Lim CT (2015) Particle-based simulations of red blood cells: a review. J Biomech 49(11):2255–2266CrossRefGoogle Scholar
  44. Yin X, Zhang J (2012) Cell-free layer and wall shear stress variation in microvessels. Biorheology 49(4):261–270Google Scholar
  45. Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285–295CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Brenna Hogan
    • 1
  • Zaiyi Shen
    • 3
  • Hengdi Zhang
    • 2
  • Chaouqi Misbah
    • 2
  • Abdul I. Barakat
    • 1
    Email author
  1. 1.Hydrodynamics Laboratory (LadHyX)École PolytechniquePalaiseauFrance
  2. 2.Laboratoire Interdisciplinaire de Physique (LiPhy)Université Joseph FourierSaint-Martin-d’HèresFrance
  3. 3.Laboratoire Ondes et Matière d’Aquitaine (LOMA)Université de BordeauxTalenceFrance

Personalised recommendations