Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 4, pp 1031–1045 | Cite as

Surface deformation tracking and modelling of soft materials

  • Matthew D. Parker
  • Thiranja P. Babarenda Gamage
  • Amir HajiRassouliha
  • Andrew J. Taberner
  • Martyn P. Nash
  • Poul M. F. NielsenEmail author
Original Paper
  • 86 Downloads

Abstract

Many computer vision algorithms have been presented to track surface deformations, but few have provided a direct comparison of measurements with other stereoscopic approaches and physics-based models. We have previously developed a phase-based cross-correlation algorithm to track dense distributions of displacements over three-dimensional surfaces. In the present work, we compare this algorithm with one that uses an independent tracking system, derived from an array of fluorescent microspheres. A smooth bicubic Hermite mesh was fitted to deformations obtained from the phase-based cross-correlation data. This mesh was then used to estimate the microsphere locations, which were compared to stereo reconstructions of the microsphere positions. The method was applied to a 35 mm × 35 mm × 35 mm soft silicone gel cube under indentation, with three square bands of microspheres placed around the indenter tip. At an indentation depth of 4.5 mm, the root-mean-square (RMS) differences between the reconstructed positions of the microspheres and their identified positions for the inner, middle, and outer bands were 60 µm, 20 µm, and 19 µm, respectively. The usefulness of the strain-tracking data for physics-based finite element modelling of large deformation mechanics was then demonstrated by estimating a neo-Hookean stiffness parameter for the gel. At the optimal constitutive parameter estimate, the RMS difference between the measured microsphere positions and their finite element model-predicted locations was 143 µm.

Keywords

Deformation Stereoscopy Soft materials Large deformation Modelling 

Notes

References

  1. Affagard JS, Feissel P, Bensamoun SF (2015) Measurement of the quadriceps muscle displacement and strain fields with ultrasound and digital image correlation (DIC) techniques. IRBM.  https://doi.org/10.1016/j.irbm.2015.02.002 Google Scholar
  2. Augenstein KF, Cowan BR, LeGrice IJ, Nielsen PMF, Young AA (2005) Method and apparatus for soft tissue material parameter estimation using tissue tagged magnetic resonance imaging. J Biomech Eng 127(1):148.  https://doi.org/10.1115/1.1835360 Google Scholar
  3. Azar FS, Metaxas DN, Schnall MD (2001) A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Acad Radiol 8(10):965–975.  https://doi.org/10.1016/S1076-6332(03)80640-2 zbMATHGoogle Scholar
  4. Babarenda Gamage TP, Rajagopal V, Ehrgott M, Nash MP, Nielsen PMF (2011) Identification of mechanical properties of heterogeneous soft bodies using gravity loading. Int J Numer Methods Biomed Eng 27(3):391–407zbMATHGoogle Scholar
  5. Bader DL, Bowker P (1983) Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials 4(4):305–308Google Scholar
  6. Berardesca E, Elsner P, Wilhelm K-P, Maibach H (1995) Bioengineering of the skin: methods and instrumentation, vol III. CRC Press, Boca RatonGoogle Scholar
  7. Bismuth C, Gerin C, Viguier E et al (2014) The biomechanical properties of canine skin measured in situ by uniaxial extension. J Biomech 47(5):1067–1073.  https://doi.org/10.1016/j.jbiomech.2013.12.027 Google Scholar
  8. Boyer G, Laquièze L, Le Bot A, Laquièze S, Zahouani H (2009) Dynamic indentation on human skin in vivo: ageing effects. Skin Res Technol 15(1):55–67.  https://doi.org/10.1111/j.1600-0846.2008.00324.x Google Scholar
  9. Bradley C, Bowery A, Britten R et al (2011) OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Prog Biophys Mol Biol 107(1):32–47.  https://doi.org/10.1016/j.pbiomolbio.2011.06.015 Google Scholar
  10. Chung JH, Rajagopal V, Nielsen PMF, Nash MP (2008) A biomechanical model of mammographic compressions. Biomech Model Mechanobiol 7(1):43–52.  https://doi.org/10.1007/s10237-006-0074-6 Google Scholar
  11. Culjat MO, Goldenberg D, Tewari P, Singh RS (2010) A review of tissue substitutes for ultrasound imaging. Ultrasound Med Biol 36(6):861–873.  https://doi.org/10.1016/j.ultrasmedbio.2010.02.012 Google Scholar
  12. Delalleau A, Josse G, Lagarde J-M, Zahouani H, Bergheau J-M (2006) Characterization of the mechanical properties of skin by inverse analysis combined with the indentometry test. J Biomech 39(9):1603–1610Google Scholar
  13. Delalleau A, Josse G, Lagarde J-M, Zahouani H, Bergheau J-M (2008) A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res Technol 14(2):152–164.  https://doi.org/10.1111/j.1600-0846.2007.00269.x zbMATHGoogle Scholar
  14. Delalleau A, Josse G, George J, Yassine M, Ossant F, Lagarde J-M (2009) A human skin ultrasonic imaging to analyse its mechanical properties. Eur J Comput Mech 18(1):105–116.  https://doi.org/10.3166/EJCM.18.105-116 Google Scholar
  15. Duggan TC (1967) Dynamic mechanical testing of living tissue. In: Digest of the 7th international conference on medical and biological engineering. Federation of Medical and Biological Engineering, p 368Google Scholar
  16. Elsner P, Berardesca E, Maibach H, Willhelm K-P (2002) Bioengineering of the skin. CRC Press, Boca RatonGoogle Scholar
  17. Es’haghian S, Gong P, Kennedy KM et al (2015) In vivo optical elastography: stress and strain imaging of human skin lesions. In: Larin KV, Sampson DD (eds) SPIE BiOS. International Society for Optics and Photonics, 93270C.  https://doi.org/10.1117/12.2078706
  18. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache P (1989) Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol 93:353–357.  https://doi.org/10.1111/1523-1747.ep12280259 Google Scholar
  19. Evans SL, Holt CA (2009) Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J Strain Anal Eng Des 44(5):337–345.  https://doi.org/10.1243/03093247jsa488 Google Scholar
  20. Finlay B (1970) Dynamic mechanical testing of human skin “in vivo”. J Biomech 3(6):557–568Google Scholar
  21. Flynn C, McCormack BAO (2009) A three-layer model of skin and its application in simulating wrinkling. Comput Methods Biomech Biomed Eng 12(2):125–134.  https://doi.org/10.1080/10255840802529933 Google Scholar
  22. Flynn C, Rubin MB, Nielsen P (2011a) A model for the anisotropic response of fibrous soft tissues using six discrete fibre bundles. Int J Numer Methods Biomed Eng 27:1793–1811.  https://doi.org/10.1002/cnm zbMATHGoogle Scholar
  23. Flynn C, Taberner A, Nielsen P (2011b) Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomech Model Mechanobiol 10(1):27–38.  https://doi.org/10.1007/s10237-010-0216-8 Google Scholar
  24. Flynn C, Taberner A, Nielsen P (2011c) Measurement of the force–displacement response of in vivo human skin under a rich set of deformations. Med Eng Phys 33(5):610–619.  https://doi.org/10.1016/j.medengphy.2010.12.017 Google Scholar
  25. Flynn C, Taberner AJ, Nielsen PMF, Fels S (2013) Simulating the three-dimensional deformation of in vivo facial skin. J Mech Behav Biomed Mater 28:484–494.  https://doi.org/10.1016/j.jmbbm.2013.03.004 Google Scholar
  26. Fthenakis C, Maes D, Smith W (1991) In vivo assessment of skin elasticity using ballistometry. J Soc Cosmet Chem 42:211–222Google Scholar
  27. Garcia D, Orteu J-J (2001) 3D deformation measurement using stereo-correlation applied to experimental mechanics. In: Proceedings of the 10th FIG international symposium deformation measurements, pp 19–22Google Scholar
  28. HajiRassouliha A, Gamage TPB, Parker MD, Nash MP, Taberner AJ, Nielsen PMF (2013) 3D surface profiling using arbitrarily positioned cameras. In: 28th international conference on image and vision computing, New Zealand (IVCNZ 2013). IEEE, pp 358–363.  https://doi.org/10.1109/ivcnz.2013.6727068
  29. Helm JD, McNeill SR, Sutton MA (1996) Improved three-dimensional image correlation for surface displacement measurement. Opt Eng 35(7):1911–1920Google Scholar
  30. Houcine A, Delalleau A, Heraud S et al (2015) How biophysical in vivo testing techniques can be used to characterize full thickness skin equivalents. Skin Res Technol.  https://doi.org/10.1111/srt.12259 Google Scholar
  31. Hu H, Liang J, Xiao ZZ, Tang ZZ, Asundi AK, Wang YX (2012) A four-camera videogrammetric system for 3-D motion measurement of deformable object. Opt Lasers Eng 50(5):800–811.  https://doi.org/10.1016/j.optlaseng.2011.12.011 Google Scholar
  32. Hu Z, Luo H, Du Y, Lu H (2013) Fluorescent stereo microscopy for 3D surface profilometry and deformation mapping. Opt Express 21(10):11808–11818.  https://doi.org/10.1364/OE.21.011808 Google Scholar
  33. Jacquemoud C, Bruyere-Garnier K, Coret M (2007) Methodology to determine failure characteristics of planar soft tissues using a dynamic tensile test. J Biomech 40(2):468–475.  https://doi.org/10.1016/j.jbiomech.2005.12.010 Google Scholar
  34. Jemec GBE, Selvaag E, Agren M, Wulf HC (2001) Measurement of the mechanical properties of skin with ballistometer and suction cup. Skin Res Technol 7(2):122–126.  https://doi.org/10.1034/j.1600-0846.2001.70211.x Google Scholar
  35. Ke X-D, Schreier HW, Sutton MA, Wang YQ (2011) Error assessment in stereo-based deformation measurements. Exp Mech 51(4):423–441.  https://doi.org/10.1007/s11340-010-9450-3 Google Scholar
  36. Kearney SP, Khan A, Dai Z, Royston TJ (2015) Dynamic viscoelastic models of human skin using optical elastography. Phys Med Biol 60(17):6975–6990.  https://doi.org/10.1088/0031-9155/60/17/6975 Google Scholar
  37. Krueger N, Luebberding S, Oltmer M, Streker M, Kerscher M (2011) Age-related changes in skin mechanical properties: a quantitative evaluation of 120 female subjects. Skin Res Technol 17(2):141–148.  https://doi.org/10.1111/j.1600-0846.2010.00486.x Google Scholar
  38. Leveque JL, Corcuff P, de Rigal J, Agache P (1984) In vivo studies of the evolution of physical properties of the human skin with age. Int J Dermatol 23(5):322–329Google Scholar
  39. Li C, Guan G, Reif R, Huang Z, Wang RK (2012) Determining elastic properties of skin by measuring surface waves from an impulse mechanical stimulus using phase-sensitive optical coherence tomography. J R Soc Interface 9(70):831–841.  https://doi.org/10.1098/rsif.2011.0583 Google Scholar
  40. Li C, Guan G, Huang Z, Wang RK, Nabi G (2015) Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods. In: Tuchin VV, Larin KV, Leahy MJ, Wang RK (eds) SPIE BiOS. International Society for Optics and Photonics, 93220O.  https://doi.org/10.1117/12.2075666
  41. Lim KH, Chew CM, Chen PCY et al (2008) New extensometer to measure in vivo uniaxial mechanical properties of human skin. J Biomech 41(5):931–936.  https://doi.org/10.1016/j.jbiomech.2008.01.004 Google Scholar
  42. Luo PF, Chao YJ, Sutton MA, Peters WH III (1993) Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Exp Mech 33(2):123–132Google Scholar
  43. Luo C-C, Qian L-X, Li G-Y, Jiang Y, Liang S, Cao Y (2015) Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Med Phys 42(7):4106–4115.  https://doi.org/10.1118/1.4922133 Google Scholar
  44. Lyons JS, Liu J, Sutton MA (1996) High-temperature deformation measurements using digital-image correlation. Exp Mech 36(1):64–70.  https://doi.org/10.1007/BF02328699 Google Scholar
  45. Malcolm DTK, Nielsen PMF, Hunter PJ, Charette PG (2002) Strain measurement in biaxially loaded inhomogeneous, anisotropic elastic membranes. Biomech Model Mechanobiol 1(3):197–210.  https://doi.org/10.1007/s10237-002-0018-8 Google Scholar
  46. Moerman KM, Holt CA, Evans SL, Simms CK (2009) Digital image correlation and finite element modelling as a method to determine mechanical properties of human soft tissue in vivo. J Biomech 42(8):1150–1153.  https://doi.org/10.1016/j.jbiomech.2009.02.016 Google Scholar
  47. Nash MP, Hunter PJ (2000) Computational mechanics of the heart. J Elast Phys Sci Solids 61(1–3):113–141.  https://doi.org/10.1023/A:1011084330767 zbMATHGoogle Scholar
  48. Orteu J-J (2009) 3-D computer vision in experimental mechanics. Opt Lasers Eng 47(3–4):282–291.  https://doi.org/10.1016/j.optlaseng.2007.11.009 Google Scholar
  49. Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30(5):599–606.  https://doi.org/10.1016/j.medengphy.2007.06.011 Google Scholar
  50. Parker MD, Jones LA, Hunter IW, Taberner AJ, Nash MP, Nielsen PMF (2016) Multidirectional in vivo characterization of skin using wiener nonlinear stochastic system identification techniques. J Biomech Eng 139(1):011004.  https://doi.org/10.1115/1.4034993 Google Scholar
  51. Quan C, Tay CJ, Huang YH (2004) 3-D deformation measurement using fringe projection and digital image correlation. Opt Int J Light Electron Opt 115(4):164–168.  https://doi.org/10.1016/S0030-4026(08)70004-4 Google Scholar
  52. Rajagopal V, Nielsen PMF, Nash MP (2004) Development of a three-dimensional finite element model of breast mechanics. In: Conference proceedings of the IEEE Engineering in Medicine and Biological Society, vol 7, pp 5080–5083.  https://doi.org/10.1109/iembs.2004.1404404
  53. Rajagopal V, Chung J-H, Bullivant D, Nielsen PMF, Nash MP (2007) Determining the finite elasticity reference state from a loaded configuration. Int J Numer Methods Eng 72(12):1434–1451MathSciNetzbMATHGoogle Scholar
  54. Salter DC, McArthur HC, Crosse JE, Dickens AD (1993) Skin mechanics measured in vivo using torsion: a new and accurate model more sensitive to age, sex and moisturizing treatment. Int J Cosmet Sci 15(5):200–218.  https://doi.org/10.1111/j.1467-2494.1993.tb00075.x Google Scholar
  55. Schreier HW, Garcia D, Sutton MA (2004) Advances in light microscope stereo vision. Exp Mech 44(3):278–288.  https://doi.org/10.1007/BF02427894 Google Scholar
  56. Stoyanov D, Darzi A, Yang G (2004) Dense 3D depth recovery for soft tissue deformation during robotically assisted laparoscopic surgery. In: Medical image computing and computer-assisted intervention—MICCAI 2004Google Scholar
  57. Stoyanov D, Mylonas G, Deligianni F, Darzi A, Yang G (2005) Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures. In: Duncan J, Gerig G (eds) Medical image computing and computer-assisted intervention—MICCAI 2005 SE-18, vol 3750. Lecture notes in computer science. Springer, Berlin, pp 139–146.  https://doi.org/10.1007/11566489_18
  58. Sutradhar A, Miller MJ (2013) In vivo measurement of breast skin elasticity and breast skin thickness. Skin Res Technol 19(1):e191–e199.  https://doi.org/10.1111/j.1600-0846.2012.00627.x Google Scholar
  59. Svoboda T, Martinec D, Pajdla T (2005) A convenient multicamera self-calibration for virtual environments. Presence Teleoper Virtual Environ 14(4):407–422.  https://doi.org/10.1162/105474605774785325 Google Scholar
  60. Tiwari V, Sutton MA, McNeill SR (2007) Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation. Exp Mech 47(4):561–579.  https://doi.org/10.1007/s11340-006-9011-y Google Scholar
  61. Tran H, Charleux F (2005) Propriétés mécaniques multi-couches de la peau humaine in vivo. In: Colloque National en Calcul des StructuresGoogle Scholar
  62. Tyson J, Schmidt T, Galanulis K (2002) Biomechanics deformation and strain measurements with 3D image correlation photogrammetry. Exp Tech 26(5):39–42.  https://doi.org/10.1111/j.1747-1567.2002.tb00083.x Google Scholar
  63. Viatour M, Henry F, Piérard GE (1995) A computerized analysis of intrinsic forces in the skin. Clin Exp Dermatol 20(4):308–312Google Scholar
  64. Weickenmeier J, Jabareen M, Mazza E (2015) Suction based mechanical characterization of superficial facial soft tissues. J Biomech.  https://doi.org/10.1016/j.jbiomech.2015.10.039 Google Scholar
  65. Woo MS, Moon KJ, Jung HY et al (2014) Comparison of skin elasticity test results from the Ballistometer® and Cutometer®. Skin Res Technol 20:422–428.  https://doi.org/10.1111/srt.12134 Google Scholar
  66. Zahouani H, Pailler-Mattei C, Sohm B, Vargiolu R, Cenizo V, Debret R (2009) Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res Technol 15(1):68–76.  https://doi.org/10.1111/j.1600-0846.2008.00329.x Google Scholar
  67. Zhang X, Greenleaf JF (2007) Estimation of tissue’s elasticity with surface wave speed. J Acoust Soc Am 122(5):2522–2525.  https://doi.org/10.1121/1.2785045 Google Scholar
  68. Zhang D, Eggleton CD, Arola DD (2002) Evaluating the mechanical behavior of arterial tissue using digital image correlation. Exp Mech 42(4):409–416.  https://doi.org/10.1007/BF02412146 Google Scholar
  69. Zhang X, Kinnick RR, Pittelkow MR, Greenleaf JF (2008) Skin viscoelasticity with surface wave method. In: 2008 IEEE ultrasonics symposium. IEEE, pp 651–653Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Matthew D. Parker
    • 1
  • Thiranja P. Babarenda Gamage
    • 1
  • Amir HajiRassouliha
    • 1
  • Andrew J. Taberner
    • 1
    • 2
  • Martyn P. Nash
    • 1
    • 2
  • Poul M. F. Nielsen
    • 1
    • 2
    Email author
  1. 1.Auckland Bioengineering InstituteUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand

Personalised recommendations