Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 1, pp 203–218 | Cite as

Local variations in material and structural properties characterize murine thoracic aortic aneurysm mechanics

  • Matthew R. Bersi
  • Chiara Bellini
  • Jay D. Humphrey
  • Stéphane AvrilEmail author
Original Paper
  • 225 Downloads

Abstract

We recently developed an approach to characterize local nonlinear, anisotropic mechanical properties of murine arteries by combining biaxial extension–distension testing, panoramic digital image correlation, and an inverse method based on the principle of virtual power. This experimental–computational approach was illustrated for the normal murine abdominal aorta assuming uniform wall thickness. Here, however, we extend our prior approach by adding an optical coherence tomography (OCT) imaging system that permits local reconstructions of wall thickness. This multimodality approach is then used to characterize spatial variations of material and structural properties in ascending thoracic aortic aneurysms (aTAA) from two genetically modified mouse models (fibrillin-1 and fibulin-4 deficient) and to compare them with those from angiotensin II-infused apolipoprotein E-deficient and wild-type control ascending aortas. Local values of stored elastic energy and biaxial material stiffness, computed from spatial distributions of the best fit material parameters, varied significantly with circumferential position (inner vs. outer curvature, ventral vs. dorsal sides) across genotypes and treatments. Importantly, these data reveal an inverse relationship between material stiffness and wall thickness that underlies a general linear relationship between stiffness and wall stress across aTAAs. OCT images also revealed sites of advanced medial degeneration, which were captured by the inverse material characterization. Quantification of histological data further provided high-resolution local correlations among multiple mechanical metrics and wall microstructure. This is the first time that such structural defects and local properties have been characterized mechanically, which can better inform computational models of aortopathy that seek to predict where dissection or rupture may initiate.

Keywords

Inverse method Constitutive relation Material heterogeneity Structure–function Aortic aneurysm Fibrillin-1 Fibulin-4 

Notes

Acknowledgments

This work was supported by NIH grants R01 HL105297, R21 HL107768, and U01 HL116323 (to JDH), P01 HL134605 (to D. Rifkin), and ERC Grant ERC-2014-CoG BIOLOCHANICS (to SA).

Supplementary material

10237_2018_1077_MOESM1_ESM.docx (7.9 mb)
Supplementary material 1 (DOCX 8116 kb)

References

  1. Alreshidan M, Shahmansouri N, Chung J et al (2017) Obtaining the biomechanical behavior of ascending aortic aneurysm via the use of novel speckle tracking echocardiography. J Thorac Cardiovasc Surg 153:781–788.  https://doi.org/10.1016/j.jtcvs.2016.11.056 CrossRefGoogle Scholar
  2. Avril S, Badel P, Duprey A (2010) Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J Biomech 43:2978–2985.  https://doi.org/10.1016/j.jbiomech.2010.07.004 CrossRefGoogle Scholar
  3. Aylward SR, Bullitt E (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans Med Imaging 21:61–75.  https://doi.org/10.1109/42.993126 CrossRefGoogle Scholar
  4. Bellini C, Ferruzzi J, Roccabianca S et al (2014) A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng 42:488–502.  https://doi.org/10.1007/s10439-013-0928-x CrossRefGoogle Scholar
  5. Bellini C, Bersi MR, Caulk AW et al (2017) Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. J R Soc Interface 14:20161036.  https://doi.org/10.1098/rsif.2016.1036 CrossRefGoogle Scholar
  6. Bersi MR, Bellini C, Di Achille P et al (2016a) Novel methodology for characterizing regional variations in material properties of murine aortas. J Biomech Eng 138:1–15.  https://doi.org/10.1115/1.4033674 CrossRefGoogle Scholar
  7. Bersi MR, Bellini C, Wu J et al (2016b) Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension 67:890–896.  https://doi.org/10.1161/HYPERTENSIONAHA.115.06262 CrossRefGoogle Scholar
  8. Bersi MR, Khosravi R, Wujciak AJ et al (2017) Differential cell-matrix mechanoadaptations and inflammation drive regional propensities to aortic fibrosis, aneurysm or dissection in hypertension. J R Soc Interface 14:1–31.  https://doi.org/10.1098/rsif.2017.0327 CrossRefGoogle Scholar
  9. Bürk J, Blanke P, Stankovic Z et al (2012) Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson 14:1–11.  https://doi.org/10.1186/1532-429X-14-84 CrossRefGoogle Scholar
  10. Choudhury N, Bouchot O, Rouleau L et al (2009) Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Cardiovasc Pathol 18:83–91.  https://doi.org/10.1016/j.carpath.2008.01.001 CrossRefGoogle Scholar
  11. Cook JR, Clayton NP, Carta L et al (2015) Dimorphic effects of transforming growth factor-β signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler Thromb Vasc Biol.  https://doi.org/10.1161/ATVBAHA.114.305150 Google Scholar
  12. de Wit A, Vis K, Jeremy RW (2013) Aortic stiffness in heritable aortopathies: relationship to aneurysm growth rate. Heart Lung Circ 22:3–11.  https://doi.org/10.1016/j.hlc.2012.08.049 CrossRefGoogle Scholar
  13. Duprey A, Trabelsi O, Vola M et al (2016) Biaxial rupture properties of ascending thoracic aortic aneurysms. Acta Biomater 42:273–285.  https://doi.org/10.1016/j.actbio.2016.06.028 CrossRefGoogle Scholar
  14. Elefteriades JA (2008) Thoracic aortic aneurysm: reading the enemy’s playbook. Curr Probl Cardiol 33:203–277.  https://doi.org/10.1016/j.cpcardiol.2008.01.004 CrossRefGoogle Scholar
  15. Faury G (2001) Function-structure relationship of elastic arteries in evolution: From microfibrils to elastin and elastic fibres. Pathol Biol 49:310–325.  https://doi.org/10.1016/S0369-8114(01)00147-X CrossRefGoogle Scholar
  16. Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341.  https://doi.org/10.1016/j.mri.2012.05.001 CrossRefGoogle Scholar
  17. Ferruzzi J, Collins MJ, Yeh AT, Humphrey JD (2011) Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovasc Res 92:287–295.  https://doi.org/10.1093/cvr/cvr195 CrossRefGoogle Scholar
  18. Ferruzzi J, Bersi MR, Humphrey JD (2013) Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann Biomed Eng 41:1311–1330.  https://doi.org/10.1007/s10439-013-0799-1 CrossRefGoogle Scholar
  19. Ferruzzi J, Bersi MR, Uman S et al (2015) Decreased elastic energy storage, not increased material stiffness, characterizes central artery dysfunction in fibulin-5 deficiency independent of sex. J Biomech Eng 137:31007.  https://doi.org/10.1115/1.4029431 CrossRefGoogle Scholar
  20. Ferruzzi J, Murtada SI, Li G et al (2016) Pharmacologically improved contractility protects against aortic dissection in mice with disrupted transforming growth factor-beta signaling despite compromised extracellular matrix properties. Arterioscler Thromb Vasc Biol 36:919–927.  https://doi.org/10.1161/ATVBAHA.116.307436 CrossRefGoogle Scholar
  21. Fung YC (1967) Elasticity of soft tissues in simple elongation. Am J Physiol 213:1532–1544CrossRefGoogle Scholar
  22. Genovese K (2009) A video-optical system for time-resolved whole-body measurement on vascular segments. Opt Lasers Eng 47:995–1008.  https://doi.org/10.1016/j.optlaseng.2009.04.017 CrossRefGoogle Scholar
  23. Genovese K, Lee Y-U, Lee AY, Humphrey JD (2013) An improved panoramic digital image correlation method for vascular strain analysis and material characterization. J Mech Behav Biomed Mater 27:132–142.  https://doi.org/10.1016/j.jmbbm.2012.11.015 CrossRefGoogle Scholar
  24. Gleason RL, Gray SP, Wilson E, Humphrey JD (2004) A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J Biomech Eng 126:787.  https://doi.org/10.1115/1.1824130 CrossRefGoogle Scholar
  25. Gomez D, Al Haj Zen A, Borges LF et al (2009) Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol 218:131–142.  https://doi.org/10.1002/path.2516 CrossRefGoogle Scholar
  26. Hatzaras I, Tranquilli M, Coady M et al (2007) Weight lifting and aortic dissection: more evidence for a connection. Cardiology 107:103–106.  https://doi.org/10.1159/000094530 CrossRefGoogle Scholar
  27. Hentschke H, Stüttgen MC (2011) Computation of measures of effect size for neuroscience data sets. Eur J Neurosci 34:1887–1894.  https://doi.org/10.1111/j.1460-9568.2011.07902.x CrossRefGoogle Scholar
  28. Huang J, Davis EC, Chapman SL et al (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106:583–592.  https://doi.org/10.1161/CIRCRESAHA.109.207852 CrossRefGoogle Scholar
  29. Huang J, Yamashiro Y, Papke CL et al (2013) Angiotensin-converting enzyme-induced activation of local angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice. Sci Transl Med.  https://doi.org/10.1126/scitranslmed.3005025 Google Scholar
  30. Humphrey JD, Schwartz MA, Tellides G, Milewicz DM (2015) Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 116:1448–1461.  https://doi.org/10.1161/circresaha.114.304936 CrossRefGoogle Scholar
  31. Jondeau G, Boileau C (2012) Genetics of thoracic aortic aneurysms. Curr Atheroscler Rep 14:219–226.  https://doi.org/10.1007/s11883-012-0241-4 CrossRefGoogle Scholar
  32. Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:11005.  https://doi.org/10.1115/1.4005694 CrossRefGoogle Scholar
  33. Marque V, Kieffer P, Gayraud B et al (2001) Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome. Arterioscler Thromb Vasc Biol 21:1184–1189.  https://doi.org/10.1161/hq0701.092136 CrossRefGoogle Scholar
  34. Martin C, Sun W, Pham T, Elefteriades J (2013) Predictive biomechanical analysis of ascending aortic aneurysm rupture potential. Acta Biomater 9:9392–9400.  https://doi.org/10.1016/j.actbio.2013.07.044 CrossRefGoogle Scholar
  35. Masuda Y, Yamada Z, Morooka N et al (1991) Prognosis of patients with medically treated aortic dissections. Circulation 84:III7–III13Google Scholar
  36. Pereira L, Lee SY, Gayraud B et al (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823CrossRefGoogle Scholar
  37. Rateri DL, Davis FM, Balakrishnan A et al (2014) Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. Am J Pathol 184:2586–2595.  https://doi.org/10.1016/j.ajpath.2014.05.014 CrossRefGoogle Scholar
  38. Rocha KR, Yezzi AJ, Prince JL (2007) A hybrid Eulerian–Lagrangian approach for thickness, correspondence, and gridding of annular tissues. IEEE Trans Image Process 16:636–648.  https://doi.org/10.1109/TIP.2007.891072 MathSciNetCrossRefGoogle Scholar
  39. Schwill S, Seppelt P, Grünhagen J et al (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J Vasc Surg 57:1628–1636.  https://doi.org/10.1016/j.jvs.2012.10.007 CrossRefGoogle Scholar
  40. Shahmansouri N, Alreshidan M, Emmott A et al (2016a) Investigation on the regional loss factor and its anisotropy for aortic aneurysms. Materials (Basel) 9:1–16.  https://doi.org/10.3390/ma9110867 CrossRefGoogle Scholar
  41. Shahmansouri N, Alreshidan M, Emmott A et al (2016b) Evaluating ascending aortic aneurysm tissue toughness: dependence on collagen and elastin contents. J Mech Behav Biomed Mater 64:262–271.  https://doi.org/10.1016/j.jmbbm.2016.08.006 CrossRefGoogle Scholar
  42. Trachet B, Piersigilli A, Fraga-Silva RA et al (2016) Ascending aortic aneurysm in angiotensin II-infused mice: formation, progression, and the role of focal dissections. Arterioscler Thromb Vasc Biol 36:673–681.  https://doi.org/10.1161/ATVBAHA.116.307211 CrossRefGoogle Scholar
  43. Tsamis A, Phillippi JA, Koch RG et al (2013) Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. J Biomech 46:2787–2794.  https://doi.org/10.1016/j.jbiomech.2013.09.003 CrossRefGoogle Scholar
  44. van der Meer FJ, Faber DJ, Cilesiz I et al (2011) Temperature-dependent optical properties of individual vascular wall components measured by optical coherence tomography. J Biomed Opt 11:41120.  https://doi.org/10.1117/1.2333613 CrossRefGoogle Scholar
  45. Wilson JS, Humphrey JD (2014) Evolving anisotropy and degree of elastolytic insult in abdominal aortic aneurysms: potential clinical relevance? J Biomech 47:2995–3002.  https://doi.org/10.1016/j.jbiomech.2014.07.003 CrossRefGoogle Scholar
  46. Wu D, Shen YH, Russell L et al (2013) Molecular mechanisms of thoracic aortic dissection. J Surg Res 184:907–924.  https://doi.org/10.1016/j.jss.2013.06.007 CrossRefGoogle Scholar
  47. Yezzi AJ, Prince JL (2003) An Eulerian PDE approach for computing tissue thickness. IEEE Trans Med Imaging 22:1332–1339.  https://doi.org/10.1109/TMI.2003.817775 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Department of BioengineeringNortheastern UniversityBostonUSA
  4. 4.INSERM U1059, SAINBIOSE, CIS-EMSE, Mines Saint-EtienneUniversity of LyonSaint EtienneFrance

Personalised recommendations