Biomechanics and Modeling in Mechanobiology

, Volume 18, Issue 1, pp 5–16 | Cite as

Fine control of endothelial VEGFR-2 activation: caveolae as fluid shear stress shelters for membrane receptors

  • H. Shin
  • J. H. Haga
  • T. Kosawada
  • K. Kimura
  • Y. S. Li
  • S. Chien
  • G. W. Schmid-SchönbeinEmail author
Original Paper


Recent experimental evidence points to the possibility that cell surface-associated caveolae may participate in mechanotransduction. The particular shape of caveolae suggests that these structures serve to prevent exposure of putative mechanosensors residing within these membrane invaginations to shear stresses at magnitudes associated with initiation of cell signaling. Accordingly, we numerically analyzed the fluid flow in and around caveolae using the equation of motion for flow of plasma at low Reynolds numbers and assuming no slip-condition on the membrane. The plasma velocity inside a typical caveola and the shear stress acting on its membrane are markedly reduced compared to the outside membrane. Computation of the diffusion field in the vicinity of a caveola under flow, however, revealed a rapid equilibration of agonist concentration in the fluid inside a caveola with the outside plasma. Western blots and immunocytochemistry support the role of caveolae as shear stress shelters for putative membrane-bound mechanoreceptors such as flk-1. Our results, therefore, suggest that caveolae serve to reduce the fluid shear stress acting on receptors in their interior, while allowing rapid diffusion of ligands into the interior. This mechanism may permit differential control of flow and ligand activation of flk-1 receptor in the presence of ligands.


Caveolin Vascular endothelial growth factor receptor Membrane mechanics Flow analysis Diffusion analysis Finite element analysis Shear stress 



This study was funded by JSPS Grant-in-Aid for Scientific Research, No. (B)12450093, 14655089, (B)15360119 and NIH Program Project Grant HL 43026.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson RG (1993) Potocytosis of small molecules and ions by caveolae. Trends Cell Biol 3:69–72CrossRefGoogle Scholar
  2. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255:410–411CrossRefGoogle Scholar
  3. Boyd NL, Park H, Yi H, Boo YC, Sorescu GP et al (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285:H1113–H1122CrossRefGoogle Scholar
  4. Bruns RR, Palade GE (1968) Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37:244–276CrossRefGoogle Scholar
  5. Bundgaard M, Hagman P, Crone C (1983) The three-dimensional organization of plasmalemmal vesicular profiles in the endothelium of rat heart capillaries. Microvasc Res 25:358–368CrossRefGoogle Scholar
  6. Butler PJ, Tsou TC, Li JY, Usami S, Chien S (2002) Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J 16:216–218CrossRefGoogle Scholar
  7. Capozza F, Combs TP, Cohen AW, Cho YR, Park SY et al (2005) Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol 288:C1317–C1331CrossRefGoogle Scholar
  8. Chachisvilis M, Zhang YL, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci USA 103:15463–15468CrossRefGoogle Scholar
  9. Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ et al (1994) Purification and characterization of smooth muscle cell caveolae. J Cell Biol 126:127–138CrossRefGoogle Scholar
  10. Chen KD, Li YS, Kim M, Li S, Yuan S et al (1999) Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274:18393–18400CrossRefGoogle Scholar
  11. Chien S, Lee MM, Laufer LS, Handley DA, Weinbaum S et al (1981) Effects of oscillatory mechanical disturbance on macromolecular uptake by arterial wall. Arteriosclerosis 1:326–336CrossRefGoogle Scholar
  12. Chien S, Laufer L, Handley DA (1982) Vesicle distribution in the arterial endothelium determined with ruthenium red as an extracellular marker. J Ultrastruct Res 79:198–206CrossRefGoogle Scholar
  13. Chigorno V, Palestini P, Sciannamblo M, Dolo V, Pavan A et al (2000) Evidence that ganglioside enriched domains are distinct from caveolae in MDCK II and human fibroblast cells in culture. Eur J Biochem 267:4187–4197CrossRefGoogle Scholar
  14. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338CrossRefGoogle Scholar
  15. Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004a) Role of caveolae and caveolins in health and disease. Physiol Rev 84:1341–1379CrossRefGoogle Scholar
  16. Cohen AW, Razani B, Schubert W, Williams TM, Wang XB et al (2004b) Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53:1261–1270CrossRefGoogle Scholar
  17. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814CrossRefGoogle Scholar
  18. Feron O, Han X, Kelly RA (1999) Muscarinic cholinergic signaling in cardiac myocytes: dynamic targeting of M2AChR to sarcolemmal caveolae and eNOS activation. Life Sci 64:471–477CrossRefGoogle Scholar
  19. Frangos JA, Eskin SG, McIntire LV, Ives CL (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479CrossRefGoogle Scholar
  20. Frokjaer-Jensen J (1991) The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. J Electron Microsc Tech 19:291–304CrossRefGoogle Scholar
  21. Fung Y-C, Sobin SS (1972) Elasticity of the pulmonary alveolar sheet. Circ Res 30:451–468CrossRefGoogle Scholar
  22. Garanich JS, Pahakis M, Tarbell JM (2005) Shear stress inhibits smooth muscle cell migration via nitric oxide-mediated downregulation of matrix metalloproteinase-2 activity. Am J Physiol Heart Circ Physiol 288:H2244–H2252CrossRefGoogle Scholar
  23. Handley DA, Chien S (1987) Colloidal gold labeling studies related to vascular and endothelial function, hemostasis and receptor-mediated processing of plasma macromolecules. Eur J Cell Biol 43:163–174Google Scholar
  24. Handley DA, Arbeeny CM, Witte LD, Chien S (1981) Colloidal gold-low density lipoprotein conjugates as membrane receptor probes. Proc Natl Acad Sci USA 78:368–371CrossRefGoogle Scholar
  25. Hillsley MV, Frangos JA (1994) Bone tissue engineering: the role of interstitial fluid flow. Biotechnol Bioeng 43:573–581CrossRefGoogle Scholar
  26. Jacobson BS, Schnitzer JE, McCaffery M, Palade GE (1992) Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 58:296–306Google Scholar
  27. Jalali S, del Pozo MA, Chen K, Miao H, Li Y et al (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046CrossRefGoogle Scholar
  28. Johnson DL, McAllister TN, Frangos JA (1996) Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol 271:E205–E208Google Scholar
  29. Kosawada T, Matsukawa H (2003) A theoretical study of forming mechanism of membrane patent channels across endothelial cell (Chained Vesicular Channel and Infundibular Channel). JSME Int J, Ser C 46:1218–1225CrossRefGoogle Scholar
  30. Kosawada T, Skalak R, Schmid-Schönbein GW (1999) Chained vesicles in vascular endothelial cells. J Biomech Eng 121:472–479CrossRefGoogle Scholar
  31. Kosawada T, Sanada K, Takano T (2001) Large deformation mechanics of plasma membrane chained vesicles in cells. JSME Int J, Ser C 44:928–936CrossRefGoogle Scholar
  32. Kosawada T, Inoue K, Schmid-Schönbein GW (2005) Mechanics of curved plasma membrane vesicles: resting shapes, membrane curvature, and in-plane shear elasticity. J Biomech Eng 127:229–236CrossRefGoogle Scholar
  33. Lasley RD, Smart EJ (2001) Cardiac myocyte adenosine receptors and caveolae. Trends Cardiovasc Med 11:259–263CrossRefGoogle Scholar
  34. Lee J (1990) The morphometry and mechanical properties of skeletal muscle capillaries. Ph.D. dissertation. University of California, San Diego, La JollaGoogle Scholar
  35. Lee HJ, Koh GY (2003) Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun 304:399–404CrossRefGoogle Scholar
  36. Lee J, Schmid-Schönbein GW (1995) Biomechanics of muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formation. Ann Biomed Eng 23:226–246CrossRefGoogle Scholar
  37. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4:231–235CrossRefGoogle Scholar
  38. Lorenzen-Schmidt I, Schmid-Schönbein GW, Giles WR, McCulloch AD, Chien S, Omens JH (2006) Chronotropic response of cultured neonatal rat ventricular myocytes to short-term fluid shear. Cell Biochem Biophys 46:113–122CrossRefGoogle Scholar
  39. Makino A, Prossnitz ER, Bünemann M, Wang JM, Yao W, Schmid-Schönbein GW (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290:C1633–C1639CrossRefGoogle Scholar
  40. Mineo C, Anderson RG (2001) Potocytosis: Robert Feulgen Lecture. Histochem Cell Biol 116:109–118Google Scholar
  41. Palade GE, Bruns RR (1968) Structural modulations of plasmalemmal vesicles. J Cell Biol 37:633–649CrossRefGoogle Scholar
  42. Park H, Go YM, St John PL, Maland MC, Lisanti MP et al (1998) Plasma membrane cholesterol is a key molecule in shear stress-dependent activation of extracellular signal-regulated kinase. J Biol Chem 273:32304–32311CrossRefGoogle Scholar
  43. Park DS, Woodman SE, Schubert W, Cohen AW, Frank PG et al (2002) Caveolin-1/3 double-knockout mice are viable, but lack both muscle and non-muscle caveolae, and develop a severe cardiomyopathic phenotype. Am J Pathol 160:2207–2217CrossRefGoogle Scholar
  44. Pike LJ (2005) Growth factor receptors, lipid rafts and caveolae: an evolving story. Biochim Biophys Acta 1746:260–273CrossRefGoogle Scholar
  45. Rizzo V, Sung A, Oh P, Schnitzer JE (1998a) Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J Biol Chem 273:26323–26329CrossRefGoogle Scholar
  46. Rizzo V, McIntosh DP, Oh P, Schnitzer JE (1998b) In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J Biol Chem 273:34724–34729CrossRefGoogle Scholar
  47. Rizzo V, Morton C, DePaola N, Schnitzer JE, Davies PF (2003) Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. Am J Physiol Heart Circ Physiol 285:H1720–H1729CrossRefGoogle Scholar
  48. Schmid-Schönbein GW, Kosawada T, Skalak R, Chien S (1995) Membrane model of endothelial cells and leukocytes. A proposal for the origin of a cortical stress. J Biomech Eng 117:171–178CrossRefGoogle Scholar
  49. Schnitzer JE (2001) Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv Drug Deliv Rev 49:265–280CrossRefGoogle Scholar
  50. Schnitzer JE, Oh P, Jacobson BS, Dvorak AM (1995) Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2 +)-ATPase, and inositol trisphosphate receptor. Proc Natl Acad Sci USA 92:1759–1763CrossRefGoogle Scholar
  51. Schubert W, Frank PG, Woodman SE, Hyogo H, Cohen DE et al (2002) Microvascular hyperpermeability in caveolin-1 (–/–) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem 277:40091–40098CrossRefGoogle Scholar
  52. Shaul PW, Anderson RG (1998) Role of plasmalemmal caveolae in signal transduction. Am J Physiol 275:L843–L851Google Scholar
  53. Shiu YT, Li S, Marganski WA, Usami S, Schwartz MA et al (2004) Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophys J 86:2558–2565CrossRefGoogle Scholar
  54. Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707–713CrossRefGoogle Scholar
  55. Simionescu M, Gafencu A, Antohe F (2002) Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc Res Tech 57:269–288CrossRefGoogle Scholar
  56. Stan RV, Kubitza M, Palade GE (1999a) PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci USA 96:13203–13207CrossRefGoogle Scholar
  57. Stan RV, Ghitescu L, Jacobson BS, Palade GE (1999b) Isolation, cloning, and localization of rat PV-1, a novel endothelial caveolar protein. J Cell Biol 145:1189–1198CrossRefGoogle Scholar
  58. Sternberg PW, Schmid SL (1999) Caveolin, cholesterol and Ras signalling. Nat Cell Biol 1:E35–E37CrossRefGoogle Scholar
  59. Tada S, Tarbell JM (2002) Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol Heart Circ Physiol 282:H576–H584CrossRefGoogle Scholar
  60. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B (2002) Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 13:238–250CrossRefGoogle Scholar
  61. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J 20:4639–4647CrossRefGoogle Scholar
  62. Wang Y, Miao H, Li S, Chen KD, Li YS et al (2002) Interplay between integrins and FLK-1 in shear stress-induced signaling. Am J Physiol Cell Physiol 283:C1540–C1547CrossRefGoogle Scholar
  63. Woodman SE, Ashton AW, Schubert W, Lee H, Williams TM et al (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059–2068CrossRefGoogle Scholar
  64. Yamada E (1955) The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol 1:445–458CrossRefGoogle Scholar
  65. Yang B, Radel C, Hughes D, Kelemen S, Rizzo V (2011) p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol 31:376–383CrossRefGoogle Scholar
  66. Yen R-T (1989) Elasticity of microvessels in postmortem human lungs. In: Lee J-S, Skalak TC (eds) Microvascular mechanics. Springer, New York, pp 175–190CrossRefGoogle Scholar
  67. Zhu W, Smart EJ (2003) Caveolae, estrogen and nitric oxide. Trends Endocrinol Metab 14:114–117CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioengineering and Institute of Engineering in MedicineUniversity of California San DiegoLa JollaUSA
  2. 2.F. Joseph Halcomb III, M.D. Department of Biomedical EngineeringUniversity of KentuckyLexingtonUSA
  3. 3.Department of Mechanical Systems EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations