Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 17, Issue 5, pp 1533–1542 | Cite as

Effects of hydrogel injection on borderzone contractility post-myocardial infarction

  • Hua Wang
  • Christopher B. Rodell
  • Xiaoyan Zhang
  • Neville N. Dusaj
  • Joseph H. GormanIII
  • James J. Pilla
  • Benjamin M. Jackson
  • Jason A. Burdick
  • Robert C. Gorman
  • Jonathan F. Wenk
short communication
  • 118 Downloads

Abstract

Injectable hydrogels are a potential therapy for mitigating adverse left ventricular (LV) remodeling after myocardial infarction (MI). Previous studies using magnetic resonance imaging (MRI) have shown that hydrogel treatment improves systolic strain in the borderzone (BZ) region surrounding the infarct. However, the corresponding contractile properties of the BZ myocardium are still unknown. The goal of the current study was to quantify the in vivo contractile properties of the BZ myocardium post-MI in an ovine model treated with an injectable hydrogel. Contractile properties were determined 8 weeks following posterolateral MI by minimizing the difference between in vivo strains and volume calculated from MRI and finite element model predicted strains and volume. This was accomplished by using a combination of MRI, catheterization, finite element modeling, and numerical optimization. Results show contractility in the BZ of animals treated with hydrogel injection was significantly higher than untreated controls. End-systolic (ES) fiber stress was also greatly reduced in the BZ of treated animals. The passive stiffness of the treated infarct region was found to be greater than the untreated control. Additionally, the wall thickness in the infarct and BZ regions was found to be significantly higher in the treated animals. Treatment with hydrogel injection significantly improved BZ function and reduced LV remodeling, via altered MI properties. These changes are linked to a reduction in the ES fiber stress in the BZ myocardium surrounding the infarct. The current results imply that injectable hydrogels could be a viable therapy for maintaining LV function post-MI.

Keywords

Biomaterial Left ventricular remodeling Mechanical properties Magnetic resonance imaging Finite element analysis 

Notes

Acknowledgements

This study was supported by a Predoctoral Fellowship from the American Heart Association (C. Rodell), by National Institutes of Health Grants R01 HL063954 (R. Gorman) and R01 HL111090 (J. Burdick), by a grant from the National Science Foundation CMMI-1538754 (J. Wenk), and by a grant from the Shandong Province Natural Science Foundation, China ZR201709220101 (H. Wang).

Compliance with ethical standards

Conflict of interest

No conflicts of interest, financial or otherwise, are declared by the author(s).

References

  1. Blom AS et al (2007) Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann Thorac Surg 84:2004–2010.  https://doi.org/10.1016/j.athoracsur.2007.06.062 CrossRefGoogle Scholar
  2. Dorsey SM et al (2015) MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 69:65–75CrossRefGoogle Scholar
  3. Eaton LW, Weiss JL, Bulkley BH, Garrison JB, Weisfeldt ML (1979) Regional cardiac dilatation after acute myocardial infarction: recognition by two-dimensional echocardiography. N Engl J Med 300:57–62.  https://doi.org/10.1056/NEJM197901113000202 CrossRefGoogle Scholar
  4. Enomoto Y et al (2005) Early ventricular restraint after myocardial infarction: extent of the wrap determines the outcome of remodeling. Ann Thorac Surg 79:881–887.  https://doi.org/10.1016/j.athoracsur.2004.05.072 CrossRefGoogle Scholar
  5. Epstein FH, Yang Z, Gilson WD, Berr SS, Kramer CM, French BA (2002) MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med 48:399–403.  https://doi.org/10.1002/mrm.10210 CrossRefGoogle Scholar
  6. Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH (1984) Early dilation of the infarcted segment in acute transmural myocardial infarction: role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 4:201–208CrossRefGoogle Scholar
  7. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113:42–55CrossRefGoogle Scholar
  8. Guccione JM, Waldman LK, McCulloch AD (1993) Mechanics of active contraction in cardiac muscle: part II-Cylindrical models of the systolic left ventricle. J Biomech Eng 115:82–90CrossRefGoogle Scholar
  9. Ifkovits JL et al (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A 107:11507–11512.  https://doi.org/10.1073/pnas.1004097107 CrossRefGoogle Scholar
  10. Jackson BM et al (2003) Border zone geometry increases wall stress after myocardial infarction: contrast echocardiographic assessment. Am J Physiol Heart Circ Physiol 284:H475–479.  https://doi.org/10.1152/ajpheart.00360.2002 CrossRefGoogle Scholar
  11. Jackson BM et al (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40:1160–1167; discussion 1168-1171CrossRefGoogle Scholar
  12. Kelley ST et al (1999) Restraining infarct expansion preserves left ventricular geometry and function after acute anteroapical infarction. Circulation 99:135–142CrossRefGoogle Scholar
  13. Kramer CM et al (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88:1279–1288CrossRefGoogle Scholar
  14. Lee LC et al (2011) A novel method for quantifying in-vivo regional left ventricular myocardial contractility in the border zone of a myocardial infarction. J Biomech Eng 133:094506.  https://doi.org/10.1115/1.4004995 CrossRefGoogle Scholar
  15. Lima JA, Becker LC, Melin JA, Lima S, Kallman CA, Weisfeldt ML, Weiss JL (1985) Impaired thickening of nonischemic myocardium during acute regional ischemia in the dog. Circulation 71:1048–1059CrossRefGoogle Scholar
  16. McGarvey JR et al (2015) Injectable microsphere gel progressively improves global ventricular function, regional contractile strain, and mitral regurgitation after myocardial infarction. Ann Thorac Surg 99:597–603.  https://doi.org/10.1016/j.athoracsur.2014.09.014 CrossRefGoogle Scholar
  17. Moainie SL et al (2002) Infarct restraint attenuates remodeling and reduces chronic ischemic mitral regurgitation after postero-lateral infarction. Ann Thorac Surg 74:444–449; discussion 449CrossRefGoogle Scholar
  18. Mojsejenko D et al (2015) Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech Model Mechanobiol 14:633–647.  https://doi.org/10.1007/s10237-014-0627-z CrossRefGoogle Scholar
  19. Mozaffarian D et al (2016) Heart disease and stroke statistics-2016 update: a report from the american heart association. Circulation 133:e38–360.  https://doi.org/10.1161/CIR.0000000000000350 CrossRefGoogle Scholar
  20. Pilla JJ et al (2005) Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann Thorac Surg 80:2257–2262.  https://doi.org/10.1016/j.athoracsur.2005.05.089 CrossRefGoogle Scholar
  21. Pilla JJ, Koomalsingh KJ, McGarvey JR, Witschey WR, Dougherty L, Gorman JH, Gorman RC (2015) Regional myocardial three-dimensional principal strains during postinfarction remodeling. Ann Thorac Surg 99:770–778CrossRefGoogle Scholar
  22. Rodell CB et al (2016) Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ Cardiovasc Interv 9:e004058CrossRefGoogle Scholar
  23. Rodell CB, MacArthur JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, Burdick JA (2015) Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater 25:636–644.  https://doi.org/10.1002/adfm.201403550 CrossRefGoogle Scholar
  24. Ryan LP et al (2009) Dermal filler injection: a novel approach for limiting infarct expansion. Ann Thorac Surg 87:148–155.  https://doi.org/10.1016/j.athoracsur.2008.09.028 CrossRefGoogle Scholar
  25. Shimkunas R et al (2014) Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone. Am J Physiol Heart Circ Physiol 307:H1150–1158.  https://doi.org/10.1152/ajpheart.00463.2014 CrossRefGoogle Scholar
  26. Tous E et al (2011) Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 12:4127–4135.  https://doi.org/10.1021/bm201198x CrossRefGoogle Scholar
  27. Walker JC et al (2005) MRI-based finite-element analysis of left ventricular aneurysm. Am J Physiol Heart Circ Physiol 289:H692–700.  https://doi.org/10.1152/ajpheart.01226.2004 CrossRefGoogle Scholar
  28. Weisman HF, Healy B (1987) Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic concepts. Prog Cardiovasc Dis 30:73–110CrossRefGoogle Scholar
  29. Wenk JF et al (2011) Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction. J Biomech Eng 133:044501CrossRefGoogle Scholar
  30. Wenk JF et al (2009) A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J Biomech Eng 131:121011.  https://doi.org/10.1115/1.4000165 CrossRefGoogle Scholar
  31. Wilson EM et al (2003) Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 107:2857–2863.  https://doi.org/10.1161/01.CIR.0000068375.40887.FA CrossRefGoogle Scholar
  32. Wu M-T et al (2009) Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac MR correlation with left ventricular structure and function Circulation. Cardiovascular Imaging 2:32–40CrossRefGoogle Scholar
  33. Xu C et al (2010) Deformation analysis of 3D tagged cardiac images using an optical flow method. J Cardiovasc Magn Reson 12:12–19CrossRefGoogle Scholar
  34. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128.  https://doi.org/10.1016/j.neuroimage.2006.01.015 CrossRefGoogle Scholar
  35. Zhu Y, Matsumura Y, Wagner WR (2017) Ventricular wall biomaterial injection therapy after myocardial infarction: advances in material design, mechanistic insight and early clinical experiences. Biomaterials 129:37–53.  https://doi.org/10.1016/j.biomaterials.2017.02.032 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hua Wang
    • 1
    • 7
  • Christopher B. Rodell
    • 2
  • Xiaoyan Zhang
    • 1
  • Neville N. Dusaj
    • 2
  • Joseph H. GormanIII
    • 3
    • 4
  • James J. Pilla
    • 3
    • 5
  • Benjamin M. Jackson
    • 4
  • Jason A. Burdick
    • 2
  • Robert C. Gorman
    • 3
    • 4
  • Jonathan F. Wenk
    • 1
    • 6
  1. 1.Department of Mechanical EngineeringUniversity of KentuckyLexingtonUSA
  2. 2.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Gorman Cardiovascular Research Group, Department of SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of SurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  6. 6.Department of SurgeryUniversity of KentuckyLexingtonUSA
  7. 7.Department of Mechanical EngineeringLudong UniversityYantaiChina

Personalised recommendations