Advertisement

Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients

  • Weiguang YangEmail author
  • Melody Dong
  • Marlene Rabinovitch
  • Frandics P. Chan
  • Alison L. Marsden
  • Jeffrey A. Feinstein
Original Paper

Abstract

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling resulting in right ventricular (RV) dysfunction and ultimately RV failure. Mechanical stimuli acting on the vessel walls of the full pulmonary tree have not previously been comprehensively characterized. The goal of this study is to characterize wall shear stress (WSS) and strain in pediatric PAH patients at different stages of disease severity using computational patient-specific modeling. Computed tomography, magnetic resonance imaging and right heart catheterization data were collected and assimilated into pulmonary artery (PA) models for patients with and without PAH. Patients were grouped in three disease severity groups (control, moderate and severe) based on clinical evaluations. A finite element solver was employed to quantify hemodynamics and wall strains. To estimate WSS in the distal small PAs with diameters ranging from 50 to 500 \(\upmu \text {m}\), a morphometric tree model was created, with inputs coming from outlets of the 3D model. WSS in the proximal PAs decreased with disease severity (control 20.5 vs. moderate 15.8 vs. severe 6.3 \(\text {dyn}/\text {cm}^2\), \(p<0.05\)). Oscillatory shear index increased in the main pulmonary artery (MPA) with disease severity (0.13 vs. 0.13 vs. 0.2, \(p>0.05\)). Wall strains measured by the first invariant of Green strain tensor decreased with disease severity (0.16 vs. 0.12 vs. 0.11, \(p>0.05\)). Mean WSS for the distal PAs between 100 and 500 \(\upmu \text {m}\) significantly increased with disease severity (20 vs. 52 vs. 116 \(\text {dyn}/\text {cm}^2\), \(p<0.05\)). In conclusion, 3D flow simulations showed that WSS is significantly decreased in the MPA with disease while the mathematical morphometric model suggested increased WSS in the distal small vessels. Computational models can reveal mechanical stimuli acting on vessel walls that may inform patient risk stratification and flow shear experiments.

Keywords

Pulmonary arterial hypertension Wall shear stress Oscillatory shear index Wall strain Distal pulmonary artery Morphometry tree Blood flow simulation Patient-specific modeling 

Notes

Acknowledgements

The authors would like to thank Dr. Chiu-Yu Chen, Michelle Ogawa, Sam Craft, Aldine Whitfield and Matthew Irvin for their assistance in data collection. This work was supported in part by the Vera Moulton Wall Center at Stanford University. Melody Dong was supported by an NSF graduate research fellowship. High-performance computing resources were provided by Stanford Research Computing and the NSF XSEDE program Towns et al. (2014).

References

  1. Abman SH, Hansmann G, Archer SL, Ivy DD, Adatia I, Chung WKEA (2015) Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation 132(21):2037–2099.  https://doi.org/10.1161/CIR.0000000000000329 Google Scholar
  2. Allen RP, Schelegle ES, Bennett SH (2014) Diverse forms of pulmonary hypertension remodel the arterial tree to a high shear phenotype. Am J Physiol Heart Circul Physiol 307(3):H405–H417Google Scholar
  3. Barker AJ, Roldn-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, Markl M, Franois CJ (2015) 4d Flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 73(5):1904–1913.  https://doi.org/10.1002/mrm.25326 Google Scholar
  4. Barker AJ, Roldn-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, Markl M, Franois CJ (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 73(5):1904–1913.  https://doi.org/10.1002/mrm.25326 Google Scholar
  5. Compton GL, Florence J, MacDonald C, Yoo SJ, Humpl T, Manson D (2015) Main pulmonary artery-to-ascending aorta diameter ratio in healthy children on MDCT. Am J Roentgenol 205(6):1322–1325.  https://doi.org/10.2214/AJR.15.14301 Google Scholar
  6. Conover T (2007) Fluid diode simulation, pulmonary valve position: 2-d axisymmetric. Technical report unregulated right heart. Clemson UniversityGoogle Scholar
  7. Esmaily Moghadam M, Vignon-Clementel IE, Figliola R, Marsden AL (2013) A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J Comput Phys 244:63–79.  https://doi.org/10.1016/j.jcp.2012.07.035 MathSciNetzbMATHGoogle Scholar
  8. Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52(5):1141–1152.  https://doi.org/10.1007/s00466-013-0868-1 MathSciNetzbMATHGoogle Scholar
  9. Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706MathSciNetzbMATHGoogle Scholar
  10. Ghorishi Z, Milstein JM, Poulain FR, Moon-Grady A, Tacy T, Bennett SH, Fineman JR, Eldridge MW (2007) Shear stress paradigm for perinatal fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow. Am J Physiol Heart Circul Physiol 292(6):H3006–H3018Google Scholar
  11. Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4):352–363.  https://doi.org/10.1159/000080699 Google Scholar
  12. Holloway H, Perry M, Downey J, Parker J, Taylor A (1983) Estimation of effective pulmonary capillary pressure in intact lungs. J Appl Physiol 54(3):846–851Google Scholar
  13. Hopper RK, Abman SH, Ivy DD (2016) Persistent challenges in pediatric pulmonary hypertension. Chest 150(1):226–236.  https://doi.org/10.1016/j.chest.2016.01.007 Google Scholar
  14. Huang W, Yen RT, McLaurine M, Bledsoe G (1996) Morphometry of the human pulmonary vasculature. J Appl Physiol 81(5):2123–2133.  https://doi.org/10.1152/jappl.1996.81.5.2123 Google Scholar
  15. Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52(2):195–200.  https://doi.org/10.1161/HYPERTENSIONAHA.107.103440 Google Scholar
  16. Hunter KS, Lanning CJ, Chen SYJ, Zhang Y, Garg R, Ivy DD, Shandas R (2004) Computational fluid dynamic study of flow optimization in realistic models of the total cavopulmonary connections. Biomech Eng 128(4):564–72Google Scholar
  17. Hunter KS, Albietz JA, Lee PF, Lanning CJ, Lammers SR, Hofmeister SH, Kao PH, Qi HJ, Stenmark KR, Shandas R (2010) In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J Appl Physiol 108(4):968–975Google Scholar
  18. Ivy DD, Rosenzweig EB, Lemari JC, Brand M, Rosenberg D, Barst RJ (2010) Long-term outcomes in children with pulmonary arterial hypertension treated with bosentan in real-world clinical settings. Am J Cardiol 106(9):1332–1338.  https://doi.org/10.1016/j.amjcard.2010.06.064 Google Scholar
  19. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered navierstokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319zbMATHGoogle Scholar
  20. Jeffery TK, Morrell NW (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis 45(3):173–202.  https://doi.org/10.1053/pcad.2002.130041 Google Scholar
  21. Kassab GS, Rider CA, Tang NJ, Fung YC (1993) Morphometry of pig coronary arterial trees. Am J Physiol 265(1 Pt 2):H350–365.  https://doi.org/10.1152/ajpheart.1993.265.1.H350 Google Scholar
  22. Kheyfets VO, O’Dell W, Smith T, Reilly JJ, Finol EA (2013) Considerations for numerical modeling of the pulmonary circulation—a review with a focus on pulmonary hypertension. J Biomech Eng 135(6):061,011.  https://doi.org/10.1115/1.4024141 Google Scholar
  23. Kheyfets V, Thirugnanasambandam M, Rios L, Evans D, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Spotti J, Finol E (2015a) The role of wall shear stress in the assessment of right ventricle hydraulic workload. Pulm Circ 5(1):90–100.  https://doi.org/10.1086/679703 Google Scholar
  24. Kheyfets VO, Rios L, Smith T, Schroeder T, Mueller J, Murali S, Lasorda D, Zikos A, Spotti J, Reilly JJ, Finol EA (2015b) Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput Methods Programs Biomed 120(2):88–101.  https://doi.org/10.1016/j.cmpb.2015.04.005 Google Scholar
  25. Lan H, Updegrove A, Wilson NM, Maher GD, Shadden SC, Marsden AL (2018) A re-engineered software interface and workflow for the open-source simvascular cardiovascular modeling package. J Biomech Eng 140(2):024501.  https://doi.org/10.1115/1.4038751 Google Scholar
  26. Li M, Scott DE, Shandas R, Stenmark KR, Tan W (2009) High pulsatility flow induces adhesion molecule and cytokine mRNA expression in distal pulmonary artery endothelial cells. Ann Biomed Eng 37(6):1082.  https://doi.org/10.1007/s10439-009-9684-3 Google Scholar
  27. Long CC, Hsu MC, Bazilevs Y, Feinstein JA, Marsden AL (2012) Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int J Numer Methods Biomed Eng 28:513–527MathSciNetzbMATHGoogle Scholar
  28. Marsden AL, Esmaily-Moghadam M (2015) Multiscale modeling of cardiovascular flows for clinical decision support. Appl Mech Rev 67(3):030,804.  https://doi.org/10.1115/1.4029909 Google Scholar
  29. McLaughlin VV, Presberg KW, Doyle RL, Abman SH, McCrory DC, Fortin T, Ahearn G (2004) American college of chest physicians: prognosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126(1 Suppl):78S–92S.  https://doi.org/10.1378/chest.126.1_suppl.78S Google Scholar
  30. Migliavacca F, Pennati G, Dubini G, Fumero R, Pietrabissa R, Urcelay G, Bove EL, Hsia TY, de Leval MR (2001) Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am J Physiol Heart Circ Physiol 280(5):H2076–2086Google Scholar
  31. Miyazaki S, Itatani K, Furusawa T, Nishino T, Sugiyama M, Takehara Y, Yasukochi S (2017) Validation of numerical simulation methods in aortic arch using 4d flow mri. Heart Vessels 32(8):1032–1044Google Scholar
  32. Moghadam ME, Bazilevs Y, Hsia TY, Vignon-Clementel IE, Marsden AL, (mocha) MoCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48(3):277–291.  https://doi.org/10.1007/s00466-011-0599-0 MathSciNetzbMATHGoogle Scholar
  33. Mynard JP, Davidson MR, Penny DJ, Smolich JJ (2012) A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int J Numer Methods Biomed Eng 28(6–7):626–641.  https://doi.org/10.1002/cnm.1466 MathSciNetGoogle Scholar
  34. Odagiri K, Inui N, Hakamata A, Inoue Y, Suda T, Takehara Y, Sakahara H, Sugiyama M, Alley MT, Wakayama T, Watanabe H (2016) Non-invasive evaluation of pulmonary arterial blood flow and wall shear stress in pulmonary arterial hypertension with 3d phase contrast magnetic resonance imaging. Springerplus 5(1):1071.  https://doi.org/10.1186/s40064-016-2755-7 Google Scholar
  35. Olufsen MS (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol 276(1 Pt 2):H257–268Google Scholar
  36. Pennati G, Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) A mathematical model of circulation in the presence of the bidirectional cavopulmonary anastomosis in children with a univentricular heart. Med Eng Phys 19(3):223–234Google Scholar
  37. Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98(5):699–704.  https://doi.org/10.1016/j.amjcard.2006.03.056 Google Scholar
  38. Postles A, Clark AR, Tawhai MH (2014) Dynamic blood flow and wall shear stress in pulmonary hypertensive disease. Conf Proc IEEE Eng Med Biol Soc 2014:5671–5674.  https://doi.org/10.1109/EMBC.2014.6944914 Google Scholar
  39. Potters WV, Ooij P, Marquering H, vanBavel E, Nederveen AJ (2015) Volumetric arterial wall shear stress calculation based on cine phase contrast mri. J Magn Reson Imaging 41(2):505–516Google Scholar
  40. Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular networks: theory and simulations. Am J Physiol 275(2 Pt 2):H349–360Google Scholar
  41. Rol N, Timmer EM, Faes TJC, Vonk Noordegraaf A, Grnberg K, Bogaard HJ, Westerhof N (2017) Vascular narrowing in pulmonary arterial hypertension is heterogeneous: rethinking resistance. Physiol Rep 5(6):e13159.  https://doi.org/10.14814/phy2.13159 Google Scholar
  42. Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24:267Google Scholar
  43. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 19(9):1178–1180.  https://doi.org/10.1096/fj.04-3261fje Google Scholar
  44. Sanz J, Kariisa M, Dellegrottaglie S, Prat-Gonzlez S, Garcia MJ, Fuster V, Rajagopalan S (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2(3):286–295.  https://doi.org/10.1016/j.jcmg.2008.08.007 Google Scholar
  45. Schafer M, Kheyfets VO, Schroeder JD, Dunning J, Shandas R, Buckner JK, Browning J, Hertzberg J, Hunter KS, Fenster BE (2016) Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension. Pulm Circ 6(1):37–45Google Scholar
  46. Schfer M, Ivy DD, Barker AJ, Kheyfets V, Shandas R, Abman SH, Hunter KS, Truong U (2017) Characterization of CMR-derived haemodynamic data in children with pulmonary arterial hypertension. Eur Heart J Cardiovasc Imaging 18(4):424–431.  https://doi.org/10.1093/ehjci/jew152 Google Scholar
  47. Schmidt JP, Delp SL, Sherman MA, Taylor CA, Pande VS, Altman RB (2008) The simbios national center: systems biology in motion. Proc IEEE Specl Issue Comput Syst Biol 96(8):1266–1280Google Scholar
  48. Secomb TW (2017) Blood flow in the microcirculation. Annu Rev Fluid Mech 49:443–461MathSciNetzbMATHGoogle Scholar
  49. Siegel LC, Pearl RG, Shafer SL, Ream AK, Prielipp RC (1989) The longitudinal distribution of pulmonary vascular resistance during unilateral hypoxia. Anesthesiology 70(3):527–532Google Scholar
  50. Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Sanchez MAG, Kumar RK, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25, Supplement):D34–D41Google Scholar
  51. Spilker RL, Feinstein JA, Parker DW, Reddy VM, Taylor CA (2007) Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries. Ann Biomed Eng 35(4):546–549Google Scholar
  52. Szulcek R, Happ CM, Rol N, Fontijn RD, Dickhoff C, Hartemink KJ, Grnberg K, Tu L, Timens W, Nossent GD, Paul MA, Leyen TA, Horrevoets AJ, de Man FS, Guignabert C, Yu PB, Vonk-Noordegraaf A, Amerongen GPVN, Bogaard HJ (2016) Delayed microvascular shear adaptation in pulmonary arterial hypertension role. of platelet endothelial cell adhesion molecule-1 cleavage. Am J Respirat Crit Care Med 193(12):1410–1420Google Scholar
  53. Tang BT, Pickard SS, Chan FP, Tsao PS, Taylor CA, Feinstein JA (2012) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm Circ 2(4):470–476.  https://doi.org/10.4103/2045-8932.105035 Google Scholar
  54. Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of blood flow in arteries. Comput Methods Appl Mech Eng 158(1–2):155–196MathSciNetzbMATHGoogle Scholar
  55. Terada M, Takehara Y, Isoda H, Uto T, Matsunaga M, Alley M (2016) Low WSS and high OSI measured by 3d cine PC MRI reflect high pulmonary artery pressures in suspected secondary pulmonary arterial hypertension. Magn Reson Med Sci 15(2):193–202.  https://doi.org/10.2463/mrms.mp.2015-0038 Google Scholar
  56. Tian L, Kellihan HB, Henningsen J, Bellofiore A, Forouzan O, Roldn-Alzate A, Consigny DW, Gunderson M, Dailey SH, Francois CJ, Chesler NC (2014) Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic modulus in the canine model of acute pulmonary embolization. J Biomech 47(12):2904–2910Google Scholar
  57. Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkins-Diehr N (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74.  https://doi.org/10.1109/MCSE.2014.80 Google Scholar
  58. Truong U, Fonseca B, Dunning J, Burgett S, Lanning C, Ivy DD, Shandas R, Hunter K, Barker AJ (2013) Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J Cardiovasc Magn Reson 15(1):81.  https://doi.org/10.1186/1532-429X-15-81 Google Scholar
  59. Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S (2007) Pathology of pulmonary hypertension. Clin Chest Med 28(1):23-vii.  https://doi.org/10.1016/j.ccm.2006.11.010 Google Scholar
  60. Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2017) SimVascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng 45(3):525–541.  https://doi.org/10.1007/s10439-016-1762-8 Google Scholar
  61. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796MathSciNetzbMATHGoogle Scholar
  62. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng 13(5):625–640Google Scholar
  63. Yang W, Feinstein JA, Vignon-Clementel IE (2016) Adaptive outflow boundary conditions improve post-operative predictions after repair of peripheral pulmonary artery stenosis. Biomech Model Mechanobiol 15:1345–1353.  https://doi.org/10.1007/s10237-016-0766-5 Google Scholar
  64. Yang W, Marsden AL, Ogawa MT, Sakarovitch C, Hall KK, Rabinovitch M, Feinstein JA (2018) Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension. Pulm Circ 8(3):2045894018780,534.  https://doi.org/10.1177/2045894018780534 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PediatricsStanford UniversityStanfordUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA
  3. 3.Department of RadiologyStanford UniversityStanfordUSA
  4. 4.Departments of Pediatrics and BioengineeringStanford UniversityStanfordUSA

Personalised recommendations