Advertisement

The effect of fibrillar degradation on the mechanics of articular cartilage: a computational model

  • Tanvir R. FaisalEmail author
  • Malek Adouni
  • Yasin Y. Dhaher
Original Paper
  • 47 Downloads

Abstract

The pathogenesis and pathophysiological underpinnings of cartilage degradation are not well understood. Either mechanically or enzymatically mediated degeneration at the fibril level can lead to acute focal injuries that will, overtime, cause significant cartilage degradation. Understanding the relationship between external loading and the basic molecular structure of cartilage requires establishing a connection between the fibril-level defects and its aggregate effect on cartilage. In this work, we provide a multiscale constitutive model of cartilage to elucidate the effect of two plausible fibril degradation mechanisms on the aggregate tissue: tropocollagen crosslink failure (β) and a generalized surface degradation (δ). Using our model, the mechanics of aggregate tissue shows differed yield stress and post-yield behavior after crosslink failure and surface degradation compared to intact cartilage, and the tissue-level aggregate behaviors are different from the fibrillar behaviors observed in the molecular dynamics simulations. We also compared the effect of fibrillar defects in terms of crosslink failure and surface degradation in different layers of cartilage within the macroscale tissue construct during a simulated nanoindentation test. Although the mechanical properties of cartilage tissue were largely contingent upon the mechanical properties of the fibril, the macroscale mechanics of cartilage tissue showed ~ 10% variation in yield strain (tissue yield strain: ~ 27 to ~ 37%) compared to fibrillar yield strain (fibrillar yield strain: ~ 16 to ~ 26%) for crosslink failure and ~ 7% difference for the surface degradation (yield strain variations at the tissue: ~ 30 to ~ 37% and fibril: ~ 24 to ~ 26%) at the superficial layer. The yield strain was further delayed in middle layers at least up to 30% irrespective of the failure mechanisms. The cartilage tissue appeared to withstand more strain than the fibrils. The degeneration mechanisms of fibril differentially influenced the aggregate mechanics of cartilage, and the deviation may be attributed to fiber–matrix interplay, depth-dependent fiber orientation and fibrillar defects with different degradation mechanisms. The understanding of the aggregate stress–strain behavior of cartilage tissue, cartilage degradation and its underlying biomechanical factors is important for developing engineering approaches and therapeutic interventions for cartilage pathologies.

Keywords

Cartilage degradation Crosslink failure Surface degradation Multiscale modeling 

Notes

Acknowledgements

The authors would like to thank Bethany Powell (PhD candidate) and David Malaspina (research fellow) in the Szleifer and Dhaher Labs at Northwestern University for the discussion in implementing surface adsorption to estimate surface degradation. The authors greatly appreciate the financial support of the National Institutes of Health for the Grant # U01 EB015410-01A1.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

References

  1. Addi C, Murschel F, De Crescenzo G (2016) Design and use of chimeric proteins containing a collagen-binding domain for wound healing and bone regeneration. Tissue Eng Part B Rev 23:163–182CrossRefGoogle Scholar
  2. Adouni M, Dhaher YY (2016) A multi-scale elasto-plastic model of articular cartilage. J Biomech 49:2891–2898CrossRefGoogle Scholar
  3. Adouni M, Shirazi-Adl A, Shirazi R (2012) Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses. J Biomech 45:2149–2156CrossRefGoogle Scholar
  4. Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 4:379–392CrossRefGoogle Scholar
  5. Arbabi V, Pouran B, Weinans H, Zadpoor A (2015) Transport of neutral solute across articular cartilage: the role of zonal diffusivities. J Biomech Eng 137:071001CrossRefGoogle Scholar
  6. Asaro RJ, Rice JR (1977) Strain localization in ductile single crystals. J Mech Phys Solids 25:309–338zbMATHCrossRefGoogle Scholar
  7. Ateshian GA (2009) The role of interstitial fluid pressurization in articular cartilage lubrication. J Biomech 42:1163–1176CrossRefGoogle Scholar
  8. Atkinson T, Haut R, Altiero N (1998) Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J Biomech Eng 120:181–187CrossRefGoogle Scholar
  9. Backus JD et al (2011) Cartilage viability and catabolism in the intact porcine knee following transarticular impact loading with and without articular fracture. J Orthop Res 29:501–510CrossRefGoogle Scholar
  10. Bae WC, Lewis CW, Levenston ME, Sah RL (2006) Indentation testing of human articular cartilage: effects of probe tip geometry and indentation depth on intra-tissue strain. J Biomech 39:1039–1047CrossRefGoogle Scholar
  11. Bae WC, Schumacher BL, Sah RL (2007) Indentation probing of human articular cartilage: effect on chondrocyte viability. Osteoarthr Cartil 15:9–18CrossRefGoogle Scholar
  12. Barrett AJ, Rawlings ND, Woessner JF (2012) Handbook of proteolytic enzymes. Elsevier Science, New YorkGoogle Scholar
  13. Bella J, Eaton M, Brodsky B, Berman H (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81CrossRefGoogle Scholar
  14. Bi X, Li G, Doty S, Camacho N (2005) A novel method for determination of collagen orientation in cartilage by Fourier transform infrared imaging spectroscopy (FT-IRIS). Osteoarthr Cartil 13:1050–1058CrossRefGoogle Scholar
  15. Bonassar LJ, Jeffries KA, Paguio CG, Grodzinsky AJ (1995) Cartilage degradation and associated changes in biomechanical and electromechanical properties. Acta Orthop Scand 66:38–44CrossRefGoogle Scholar
  16. Bozec L, Horton M (2005) Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy. Biophys J 88:4223–4231CrossRefGoogle Scholar
  17. Broom ND, Silyn-Roberts H (1989) The three-dimensional ‘knit’ of collagen fibrils in articular cartilage. Connect Tissue Res 23:261–277CrossRefGoogle Scholar
  18. Brown TD, Johnston RC, Saltzman CL, Marsh JL, Buckwalter JA (2006) Posttraumatic osteoarthritis: a first estimate of incidence, prevalence, and burden of disease. J Orthop Trauma 20:739–744CrossRefGoogle Scholar
  19. Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I (2008) Mapping the depth dependence of shear properties in articular cartilage. J Biomech 41:2430–2437CrossRefGoogle Scholar
  20. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci 103:12285–12290CrossRefGoogle Scholar
  21. Buehler MJ (2008) Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. J Mech Behav Biomed Mater 1:59–67CrossRefGoogle Scholar
  22. Chan DD, Neu CP, Hull ML (2009) In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement-encoded MRI. Osteoarthr Cartil 17:1461–1468CrossRefGoogle Scholar
  23. Chan DD, Cai L, Butz KD, Trippel SB, Nauman EA, Neu CP (2016) In vivo articular cartilage deformation: noninvasive quantification of intratissue strain during joint contact in the human knee. Sci Rep 6:19220. https://www.nature.com/articles/srep19220#supplementary-information
  24. Chang S-W, Shefelbine Sandra J, Buehler Markus J (2012) Structural and mechanical differences between collagen homo- and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 102:640–648CrossRefGoogle Scholar
  25. Chen JM, Sheldon A, Pincus MR (1995) Three-dimensional energy-minimized model of human Type II “Smith” collagen microfibril. J Biomol Struct Dyn 12:1129–1159CrossRefGoogle Scholar
  26. Clarke IC (1971) Articular cartilage: a review and scanning electron microscope study. Bone Joint J 53:732–750Google Scholar
  27. Danso EK, Honkanen JTJ, Saarakkala S, Korhonen RK (2014) Comparison of nonlinear mechanical properties of bovine articular cartilage and meniscus. J Biomech 47:200–206CrossRefGoogle Scholar
  28. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2016) Large deformation mechanisms, plasticity, and failure of an individual collagen fibril with different mineral content. J Bone Miner Res 31:380–390CrossRefGoogle Scholar
  29. Domene C, Jorgensen C, Abbasi SW (2016) A perspective on structural and computational work on collagen. Phys Chem Chem Phys 18:24802–24811CrossRefGoogle Scholar
  30. Eleswarapu SV, Responte DJ, Athanasiou KA (2011) Tensile properties, collagen content, and crosslinks in connective tissues of the immature knee joint. PLoS ONE 6:e26178CrossRefGoogle Scholar
  31. Eppell SJ, Smith BN, Kahn H, Ballarini R (2006) Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. J R Soc Interface 3:117–121CrossRefGoogle Scholar
  32. Evans CH (1981) Interactions of tervalent lanthanide ions with bacterial collagenase (clostridiopeptidase A). Biochem J 195:677–684CrossRefGoogle Scholar
  33. Franchi M, Trirè A, Quaranta M, Orsini E, Ottani V (2007) Collagen structure of tendon relates to function. Sci World J 7:404–420CrossRefGoogle Scholar
  34. Gardiner BS, Woodhouse FG, Besier TF, Grodzinsky AJ, Lloyd DG, Zhang L, Smith DW (2016) Predicting knee osteoarthritis. Ann Biomed Eng 44:222–233CrossRefGoogle Scholar
  35. Gasser TC, Holzapfel GA (2002) A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: continuum basis, algorithmic formulation and finite element implementation. Comput Mech 29:340–360zbMATHCrossRefGoogle Scholar
  36. Gautieri A, Vesentini S, Redaelli A, Buehler MJ (2011) Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett 11:757–766CrossRefGoogle Scholar
  37. Graham JS, Vomund AN, Phillips CL, Grandbois M (2004) Structural changes in human type I collagen fibrils investigated by force spectroscopy. Exp Cell Res 299:335–342CrossRefGoogle Scholar
  38. Halberg D, Proulx G, Doege K, Yamada Y, Drickamer K (1988) A segment of the cartilage proteoglycan core protein has lectin-like activity. J Biol Chem 263:9486–9490Google Scholar
  39. Haut R, Ide T, De Camp C (1995) Mechanical responses of the rabbit patello-femoral joint to blunt impact. J Biomech Eng 117:402–408CrossRefGoogle Scholar
  40. Hayes WC, Keer LM, Herrmann G, Mockros LF (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5:541–551CrossRefGoogle Scholar
  41. Hollander AP, Heathfield TF, Webber C, Iwata Y, Bourne R, Rorabeck C, Poole AR (1994) Increased damage to type II collagen in osteoarthritic articular cartilage detected by a new immunoassay. J Clin Investig 93:1722CrossRefGoogle Scholar
  42. Holmes DF, Kadler KE (2006) The 10 + 4 microfibril structure of thin cartilage fibrils. Proc Natl Acad Sci 103:17249–17254CrossRefGoogle Scholar
  43. Hong J, Evans TM, Mente PL (2015) Study on the damage mechanism of articular cartilage based on the fluid–solid coupled particle model. Adv Mech Eng 7:1687814015581264Google Scholar
  44. Hosseini S, Wilson W, Ito K, Van Donkelaar C (2014) A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Osteoarthr Cartil 22:95–103CrossRefGoogle Scholar
  45. Huebner JL, Williams JM, Deberg M, Henrotin Y, Kraus VB (2010) Collagen fibril disruption occurs early in primary guinea pig knee osteoarthritis osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 18:397–405CrossRefGoogle Scholar
  46. Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu C-J, Lammi MJ, Korhonen RK (2008) Stress–relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41:1978–1986CrossRefGoogle Scholar
  47. Julkunen P, Wilson W, Isaksson H, Jurvelin JS, Herzog W, Korhonen RK (2013) A review of the combination of experimental measurements and fibril-reinforced modeling for investigation of articular cartilage and chondrocyte response to loading. Comput Math Methods Med 2013:1–23CrossRefGoogle Scholar
  48. Kar S, Smith DW, Gardiner BS, Grodzinsky AJ (2016a) Systems based study of the therapeutic potential of small charged molecules for the inhibition of IL-1 mediated cartilage degradation. PLOS ONE 11:e0168047CrossRefGoogle Scholar
  49. Kar S, Smith DW, Gardiner BS, Li Y, Wang Y, Grodzinsky AJ (2016b) Modeling IL-1 induced degradation of articular cartilage. Arch Biochem Biophys 594:37–53CrossRefGoogle Scholar
  50. Kaukinen A, Laasanen M, Lammentausta E, Halmesmäki E, Helminen H, Jurvelin J, Rieppo J (2005) Destructive testing of articular cartilage in compression-effect of collagen network. In: 51st Annual meeting of the orthopaedic research societyGoogle Scholar
  51. Kempson GE, Freeman MAR, Swanson SAV (1968) Tensile properties of articular cartilage. Nature 220:1127CrossRefGoogle Scholar
  52. Kerin AJ, Wisnom MR, Adams MA (1998) The compressive strength of articular cartilage. Proc Inst Mech Eng Part H J Eng Med 212:273–280CrossRefGoogle Scholar
  53. Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S (2016) Comparison of different material models of articular cartilage in 3D computational modeling of the knee: data from the Osteoarthritis Initiative (OAI). J Biomech 49:3891–3900CrossRefGoogle Scholar
  54. Korhonen RK, Tanska P, Kaartinen SM, Fick JM, Mononen ME (2015) New concept to restore normal cell responses in osteoarthritic knee joint cartilage. Exerc Sport Sci Rev 43:143–152CrossRefGoogle Scholar
  55. Laasanen M et al (2003) Biomechanical properties of knee articular cartilage. Biorheology 40:133–140Google Scholar
  56. Lee EH (1969) Elastic-plastic deformation at finite strains. J Appl Mech 36:1–6zbMATHCrossRefGoogle Scholar
  57. Li Y, Wang Y, Chubinskaya S, Schoeberl B, Florine E, Kopesky P, Grodzinsky AJ (2015) Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post traumatic osteoarthritis osteoarthritis and cartilage/OARS. Osteoarthr Res Soc 23:266–274CrossRefGoogle Scholar
  58. Liu Y, Chan JK, Teoh SH (2015) Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med 9:85–105CrossRefGoogle Scholar
  59. Lotz M (2001) Cytokines in cartilage injury and repair. Clin Orthop Relat Res 391:S108–S115CrossRefGoogle Scholar
  60. Malaspina DC, Szleifer I, Dhaher Y (2017) Mechanical properties of a collagen fibril under simulated degradation. J Mech Behav Biomed Mater 75:549–557CrossRefGoogle Scholar
  61. Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808CrossRefGoogle Scholar
  62. Matsushita O, Jung C-M, Minami J, Katayama S, Nishi N, Okabe A (1998) A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J Biol Chem 273:3643–3648CrossRefGoogle Scholar
  63. Matsushita O, Koide T, Kobayashi R, Nagata K, Okabe A (2001) Substrate recognition by the collagen-binding domain of Clostridium histolyticum class I collagenase. J Biol Chem 276:8761–8770CrossRefGoogle Scholar
  64. Metzmacher I, Radu F, Bause M, Knabner P, Friess W (2007a) A model describing the effect of enzymatic degradation on drug release from collagen minirods. Eur J Pharm Biopharm 67:349–360CrossRefGoogle Scholar
  65. Metzmacher I, Ruth P, Abel M, Friess W (2007b) In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen 15:549–555CrossRefGoogle Scholar
  66. Miyazaki H, Hayashi K (1999) Tensile tests of collagen fibers obtained from the rabbit patellar tendon. Biomed Microdevice 2:151–157CrossRefGoogle Scholar
  67. Mononen ME, Tanska P, Isaksson H, Korhonen RK (2016) A novel method to simulate the progression of collagen degeneration of cartilage in the knee: data from the osteoarthritis initiative. Sci Rep 6:21415CrossRefGoogle Scholar
  68. Moskowitz RW (2007) Osteoarthritis: diagnosis and medical/surgical management. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  69. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73–84CrossRefGoogle Scholar
  70. Muthuri S, McWilliams D, Doherty M, Zhang W (2011) History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthr Cartil 19:1286–1293CrossRefGoogle Scholar
  71. Mwenifumbo S, Shaffer MS, Stevens MM (2007) Exploring cellular behaviour with multi-walled carbon nanotube constructs. J Mater Chem 17:1894–1902CrossRefGoogle Scholar
  72. Neu CP, Walton JH (2008) Displacement encoding for the measurement of cartilage deformation. Magn Reson Med 59:149–155CrossRefGoogle Scholar
  73. Newberry WN, Mackenzie CD, Haut RC (1998) Blunt impact causes changes in bone and cartilage in a regularly exercised animal model. J Orthop Res 16:348–354CrossRefGoogle Scholar
  74. Nötzli H, Clark J (1997) Deformation of loaded articular cartilage prepared for scanning electron microscopy with rapid freezing and freeze-substitution fixation. J Orthop Res 15:76–86CrossRefGoogle Scholar
  75. Oyen ML, Shean TA, Strange DG, Galli M (2012) Size effects in indentation of hydrated biological tissues. J Mater Res 27:245–255CrossRefGoogle Scholar
  76. Panwar P, Du X, Sharma V, Lamour G, Castro M, Li H, Brömme D (2013) Effects of cysteine proteases on the structural and mechanical properties of collagen fibers. J Biol Chem 288:5940–5950CrossRefGoogle Scholar
  77. Panwar P, Lamour G, Mackenzie NCW, Yang H, Ko F, Li H, Brömme D (2015) Changes in structural-mechanical properties and degradability of collagen during aging-associated modifications. J Biol Chem 290:23291–23306CrossRefGoogle Scholar
  78. Peters AE, Akhtar R, Comerford EJ, Bates KT (2018) Tissue material properties and computational modelling of the human tibiofemoral joint: a critical review. PeerJ 6:e4298CrossRefGoogle Scholar
  79. Piluso S, Lendlein A, Neffe AT (2017) Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks. Polym Adv Technol 28:1318–1324CrossRefGoogle Scholar
  80. Pratta MA et al (2003) Aggrecan protects cartilage collagen from proteolytic cleavage. J Biol Chem 278:45539–45545CrossRefGoogle Scholar
  81. Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7:771–782CrossRefGoogle Scholar
  82. Repo R, Finlay J (1977) Survival of articular cartilage after controlled impact. J Bone Joint Surg Am 59:1068–1076CrossRefGoogle Scholar
  83. Riley KN, Herman IM (2005) Collagenase promotes the cellular responses to injury and wound healing in vivo. J Burns Wounds 4:1–24Google Scholar
  84. Salehghaffari S, Dhaher YY (2015) A phenomenological contact model: understanding the graft–tunnel interaction in anterior cruciate ligament reconstructive surgery. J Biomech 48:1844–1851CrossRefGoogle Scholar
  85. Saxena RK, Sahay KB, Guha SK (1991) Morphological changes in the bovine articular cartilage subjected to moderate and high loadings. Cells Tissues Organ 142:152–157CrossRefGoogle Scholar
  86. Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506CrossRefGoogle Scholar
  87. Shirazi R, Shirazi-Adl A (2008) Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage. J Orthop Res 26:608–615CrossRefGoogle Scholar
  88. Shirazi R, Shirazi-Adl A (2009) Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech 42:2458–2465CrossRefGoogle Scholar
  89. Shirazi R, Shirazi-Adl A, Hurtig M (2008) Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41:3340–3348CrossRefGoogle Scholar
  90. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958CrossRefGoogle Scholar
  91. Sigma-Aldrich. Collagenase from Clostridium histolyticum. High purity, purified by chromatography, Type VII, ≥4 FALGPA units/mg solid, lyophilized powder, 1,000-3,000 CDU/mg solid (CDU = collagen digestion units). https://www.sigmaaldrich.com/catalog/product/sigma/c0773?lang=en&region=US
  92. Silver FH, Siperko LM (2003) Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix? Crit Rev Biomed Eng 31:255–331CrossRefGoogle Scholar
  93. Spahn G, Kahl E, Klinger Hans M, Mückley T, Günther M, Hofmann Gunther O (2007) Mechanical behavior of intact and low-grade degenerated cartilage/Mechanische Eigenschaften von intaktem und niedriggradig geschädigtem Knorpel 52. Biomed Tech 52:216–222CrossRefGoogle Scholar
  94. Stolz M, Raiteri R, Daniels A, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283CrossRefGoogle Scholar
  95. Stolz M et al (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 4:186CrossRefGoogle Scholar
  96. Tang H, Buehler MJ, Moran B (2009) A constitutive model of soft tissue: from nanoscale collagen to tissue continuum. Ann Biomed Eng 37:1117–1130CrossRefGoogle Scholar
  97. Tang Y, Ballarini R, Buehler MJ, Eppell SJ (2010) Deformation micromechanisms of collagen fibrils under uniaxial tension. J R Soc Interface 7:839–850CrossRefGoogle Scholar
  98. Thompson JR, Oegema JT, Lewis J, Wallace L (1991) Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am 73:990–1001CrossRefGoogle Scholar
  99. Thompson RC, Vener MJ, Griffiths HJ, Lewis JL, Oegema TR, Wallace L (1993) Scanning electron-microscopic and magnetic resonance-imaging studies of injuries to the patellofemoral joint after acute transarticular loading. JBJS 75:704–713CrossRefGoogle Scholar
  100. Toyoshima T, Matsushita O, Minami J, Nishi N, Okabe A, Itano T (2001) Collagen-binding domain of a Clostridium histolyticum collagenase exhibits a broad substrate spectrum both in vitro and in vivo. Connect Tissue Res 42:281–290CrossRefGoogle Scholar
  101. Tzafriri AR, Bercovier M, Parnas H (2002) Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices. Biophys J 83:776–793CrossRefGoogle Scholar
  102. Verzijl N et al (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheumatol 46:114–123CrossRefGoogle Scholar
  103. Volokh KY (2007a) Hyperelasticity with softening for modeling materials failure. J Mech Phys Solids 55:2237–2264MathSciNetzbMATHCrossRefGoogle Scholar
  104. Volokh KY (2007b) Softening hyperelasticity for modeling material failure: analysis of cavitation in hydrostatic tension. Int J Solids Struct 44:5043–5055zbMATHCrossRefGoogle Scholar
  105. Watanabe H, Kimata K, Line S, Strong D, L-y Gao, Kozak CA, Yamada Y (1994) Mouse cartilage matrix deficiency (CMD) caused by a 7 bp deletion in the aggrecan gene. Nature Genet 7:154–157CrossRefGoogle Scholar
  106. Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes, vol 6. Academic Press, CambridgeGoogle Scholar
  107. Welgus H, Jeffrey J, Stricklin G, Roswit W, Eisen A (1980) Characteristics of the action of human skin fibroblast collagenase on fibrillar collagen. J Biol Chem 255:6806–6813Google Scholar
  108. Williamson AK, Chen AC, Masuda K, Thonar EJMA, Sah RL (2003) Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res 21:872–880CrossRefGoogle Scholar
  109. Wilson JJ, Matsushita O, Okabe A, Sakon J (2003) A bacterial collagen-binding domain with novel calcium-binding motif controls domain orientation. EMBO J 22:1743–1752CrossRefGoogle Scholar
  110. Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37:357–366CrossRefGoogle Scholar
  111. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng 11:1–18CrossRefGoogle Scholar
  112. Xu Y et al (2000) Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J Biol Chem 275:38981–38989CrossRefGoogle Scholar
  113. Zderic SA (1995) Muscle, matrix, and bladder function. In: Zderic SA (ed) Advances in experimental medicine and biology, vol 385. Plenum Press, New York. https://nla.gov.au/nla.cat-vn950200

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Medicine and RehabilitationNorthwestern UniversityChicagoUSA
  2. 2.Legs + Walking LabShirley Ryan AbilityLabChicagoUSA
  3. 3.Department of Biomedical EngineeringNorthwestern UniversityEvanstonUSA
  4. 4.Department of Mechanical EngineeringAustralian College of KuwaitEast MeshrifKuwait
  5. 5.Department of Mechanical EngineeringUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations