Advertisement

Modelling of endothelial cell migration and angiogenesis in microfluidic cell culture systems

  • Nikola Kuzmic
  • Thomas Moore
  • Deepika Devadas
  • Edmond W. K. Young
Original Paper
  • 75 Downloads

Abstract

Tumour-induced angiogenesis is a complex biological process that involves growth of new blood vessels within the tumour microenvironment and is an important target for cancer therapies. Significant efforts have been undertaken to develop theoretical models as well as in vitro experimental models to study angiogenesis in a highly controllable and accessible manner. Various mathematical models have been developed to study angiogenesis, but these have mostly been applied to in vivo assays. Recently, microfluidic cell culture systems have emerged as useful and powerful tools for studying cell migration and angiogenesis processes, but thus far, mathematical angiogenesis models have not yet been applied to microfluidic geometries. Integrating mathematical and computational modelling with microfluidic-based assays has potential to enable greater control over experimental parameters, provide new insights into fundamental angiogenesis processes and assist in accelerating design and optimization of operating conditions. Here, we describe the development and application of a combined mathematical and computational modelling approach tailored specifically for microfluidic cell culture systems. The objective was to allow optimization of the engineering design of microfluidic systems, where the model may be used to test the impact of various geometric parameters on cell migration and angiogenesis processes, and assist in identifying optimal device dimensions to achieve desired readouts. We employed two separate continuum mathematical models that treated cell density, vessel length density and vascular endothelial growth factor (VEGF) concentration as continuous average variables, and we implemented these models numerically using finite difference discretization and a Method of Lines approach. We examined the average response of cells to VEGF gradients inside our microfluidic device, including the time-dependent changes in cell density and vessel density, and how they were affected by changes in device geometries including the migration port width and length. Our study demonstrated that mathematical modelling can be integrated with microfluidics to offer new perspectives on emerging problems in biomicrofluidics and cancer biology.

Keywords

Migration Angiogenesis Vessel sprouting Endothelial cells Chemotaxis Mathematical modelling Computational modelling 

Notes

Acknowledgements

We acknowledge the financial support from the NSERC—Canada Graduate Scholarship (CGS-M), Ontario Graduate Scholarships (OGS), Weber and Mariano Graduate Scholarship, and Barbara and Frank Milligan Graduate Fellowship to NK, and the Canada Foundation for Innovation (CFI) Leaders Opportunity Fund, Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. 436117-2013) Discovery Grant, Canadian Cancer Society Research Institute (CCSRI) (Grant No. 702525) Innovation Grant, Early Researcher Award from Ontario Ministry of Research and Innovation, and Cancer Research Society (CRS) (Grant No. 20172) Operating Grant to EY.

Supplementary material

10237_2018_1111_MOESM1_ESM.docx (317 kb)
Supplementary material 1 (DOCX 316 kb)

References

  1. Abhyankar VV, Toepke MW, Cortesio CL, Lokuta MA, Huttenlocher A, Beebe DJ (2008) A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515.  https://doi.org/10.1039/b803533d CrossRefGoogle Scholar
  2. Addison-Smith B (2010) Mathematical modelling of tumour-induced angiogenesis. Ph.D. thesis, University of QueenslandGoogle Scholar
  3. Akeson A, Herman A, Wiginton D, Greenberg J (2010) Endothelial cell activation in a VEGF-A gradient: relevance to cell fate decisions. Microvasc Res 80(1):65–74.  https://doi.org/10.1016/j.mvr.2010.02.001 CrossRefGoogle Scholar
  4. Ambrosi D, Bussolino F, Preziosi L (2005) A review of vasculogenesis models. J Theor Med 6(1):1–19.  https://doi.org/10.1080/1027366042000327098 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899.  https://doi.org/10.1006/bulm.1998.0042 CrossRefzbMATHGoogle Scholar
  6. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49(1):32–40.  https://doi.org/10.1373/49.1.32 CrossRefGoogle Scholar
  7. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19(5):329–337.  https://doi.org/10.1016/j.semcancer.2009.05.003 CrossRefGoogle Scholar
  8. Balding D, McElwain DLS (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114(1):53–73.  https://doi.org/10.1016/S0022-5193(85)80255-1 CrossRefGoogle Scholar
  9. Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: Robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5(10):e1000549.  https://doi.org/10.1371/journal.pcbi.1000549 CrossRefGoogle Scholar
  10. Bischel LL, Young EWK, Mader BR, Beebe DJ (2013) Tubeless microfluidic angiogenesis assay with three-dimensional endothelial-lined microvessels. Biomaterials 34(5):1471–1477.  https://doi.org/10.1016/j.biomaterials.2012.11.005 CrossRefGoogle Scholar
  11. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115(3):453–466.  https://doi.org/10.1084/jem.115.3.453 CrossRefGoogle Scholar
  12. Byrne HM, Chaplain MAJ (1995) Explicit solutions of a simplified model of capillary sprout growth during tumour angiogenesis. Appl Math Lett 8(5):71–76.  https://doi.org/10.1016/0893-9659(95)00069-3 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cao R, Brakenhielm E, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):548–553.  https://doi.org/10.1038/nm848 CrossRefGoogle Scholar
  14. Carmeliet P, Jain R (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257CrossRefGoogle Scholar
  15. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264.  https://doi.org/10.1007/s11095-006-9173-4 CrossRefGoogle Scholar
  16. Connor AJ, Nowak RP, Lorenzon E, Thomas M, Herting F, Hoert S et al (2015) An integrated approach to quantitative modelling in angiogenesis research. J R Soc Interface 12(110):1–29.  https://doi.org/10.1098/rsif.2015.0546 CrossRefGoogle Scholar
  17. Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22(4):201–207.  https://doi.org/10.1016/S0165-6147(00)01676-X CrossRefGoogle Scholar
  18. Das A, Lauffenburger D, Asada H, Kamm RD (2010) A hybrid continuum-discrete modelling approach to predict and control angiogenesis: Analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos Trans R Soc A Math Phys Eng Sci 368(1921):2937–2960.  https://doi.org/10.1098/rsta.2010.0085 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Deakin AS (1976) Model for initial vascular patterns in melanoma transplants. Growth 40(2):191–201Google Scholar
  20. DeCicco-Skinner KL, Henry GH, Cataisson C, Tabib T, Gwilliam JC, Watson NJ et al (2014) Endothelial cell tube formation assay for the in vitro study of angiogenesis. J Vis Exp 10(91):1–8.  https://doi.org/10.3791/51312 Google Scholar
  21. Di Costanzo E, Ingangi V, Angelini C, Carfora MF, Carriero MV, Natalini R (2016) A macroscopic mathematical model for cell migration assays using a real-time cell analysis. PLoS ONE 11(9):1–20.  https://doi.org/10.1371/journal.pone.0162553 CrossRefGoogle Scholar
  22. Gabhann F Mac, Popel AS (2005) Differential binding of VEGF isoforms to VEGF receptor 2 in the presence of neuropilin-1: a computational model. Am J Physiol Heart Circ Physiol 288(6):H2851–H2860.  https://doi.org/10.1152/ajpheart.01218.2004 CrossRefGoogle Scholar
  23. Gamba A, Ambrosi D, Coniglio A, de Candia A, Di Talia S, Giraudo E et al (2003) Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys Rev Lett 90(11):4.  https://doi.org/10.1103/PhysRevLett.90.118101 CrossRefGoogle Scholar
  24. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121.  https://doi.org/10.1152/physrev.00038.2010 CrossRefGoogle Scholar
  25. Haessler U, Pisano M, Wu M, Swartz MA (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci 108(14):5614–5619.  https://doi.org/10.1073/pnas.1014920108 CrossRefGoogle Scholar
  26. Kim BJ, Wu M (2012) Microfluidics for mammalian cell chemotaxis. Annual Biomed Eng. 40(6):1316–1327.  https://doi.org/10.1007/s10439-011-0489-9.Microfluidics CrossRefGoogle Scholar
  27. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11–12):584–603.  https://doi.org/10.1039/c0ib00055h CrossRefGoogle Scholar
  28. Kim S, Lee H, Chung M, Jeon NL (2013) Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13:1489–1500.  https://doi.org/10.1039/c3lc41320a CrossRefGoogle Scholar
  29. Milde F, Bergdorf M, Koumoutsakos P (2008) A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J 95(7):3146–3160.  https://doi.org/10.1529/biophysj.107.124511 CrossRefGoogle Scholar
  30. Plank MJ, Sleeman BD (2003) A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. Math Med Biol 20(July):135–181.  https://doi.org/10.1093/imammb20.2.135 CrossRefzbMATHGoogle Scholar
  31. Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2(10):2545–2550.  https://doi.org/10.1038/nprot.2007.368 CrossRefGoogle Scholar
  32. Sadiku MNO, Obiozor CN (2000) A simple introduction to the method of lines. Int J Electr Eng Educ 37(3):282–296.  https://doi.org/10.7227/IJEEE.37.3.8 CrossRefGoogle Scholar
  33. Scianna M, Bell CG, Preziosi L (2013) A review of mathematical models for the formation of vascular networks. J Theor Biol 333:174–209.  https://doi.org/10.1016/j.jtbi.2013.04.037 MathSciNetCrossRefzbMATHGoogle Scholar
  34. Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22(8):1771–1779.  https://doi.org/10.1093/emboj/cdg176 CrossRefGoogle Scholar
  35. Shamloo A, Ma N, Poo M, Sohn LL, Heilshorn SC (2008) Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292.  https://doi.org/10.1039/b719788h CrossRefGoogle Scholar
  36. Sherratt AJ, Murray JD (1990) Models of epidermal wound healing. Proc R Soc Lond B 241(1300):29–36.  https://doi.org/10.1098/rspb.1990.0061 CrossRefGoogle Scholar
  37. Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108(37):15342–15347.  https://doi.org/10.1073/pnas.1105316108 CrossRefGoogle Scholar
  38. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol (Camb) 4(8):857–862.  https://doi.org/10.1039/c2ib20061a CrossRefGoogle Scholar
  39. Stokes CL, Laudenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and cehmotaxis in angiogenesis. J Theor Biol 152:377–403CrossRefGoogle Scholar
  40. Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99:419–430Google Scholar
  41. Theberge AB, Yu J, Young EWK, Ricke WA, Bushman W, Beebe DJ (2015) Microfluidic multiculture assay to analyze biomolecular signaling in angiogenesis. Anal Chem 87(6):3239–3246.  https://doi.org/10.1021/ac503700f CrossRefGoogle Scholar
  42. Timmins N, Dietmair S, Nielsen L (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103.  https://doi.org/10.1007/s10456-004-8911-7 CrossRefGoogle Scholar
  43. Travasso RDM, Corvera Poiré E, Castro M, Rodrguez-Manzaneque JC, Hernández-Machado A (2011) Tumor angiogenesis and vascular patterning: a mathematical model. PLoS ONE 6(5):e19989.  https://doi.org/10.1371/journal.pone.0019989 CrossRefGoogle Scholar
  44. Vickerman V, Chung S, Kamm RD (2008) Design, fabrication and implementation of a novel multi parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477.  https://doi.org/10.1039/b802395f.Design CrossRefGoogle Scholar
  45. Vilanova G, Colomnias I, Gomez G (2016) Capillary networks in tumor angiogenesis: from discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis. Int J Numer Methods Biomed Eng 29(10):1015–1037.  https://doi.org/10.1002/cnm MathSciNetCrossRefGoogle Scholar
  46. Wang D, Lehman RE, Donner DB, Matli MR, Warren RS, Welton ML (2002) Expression and endocytosis of VEGF and its receptors in human colonic vascular endothelial cells. Am J Physiol Gastrointest Liver Physiol 282(6):G1088–G1096.  https://doi.org/10.1152/ajpgi.00250.2001 CrossRefGoogle Scholar
  47. Young EWK (2013) Advances in microfluidic cell culture systems for studying angiogenesis. JALA 18(6):427–436.  https://doi.org/10.1177/2211068213495206 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations