Advertisement

Ocean Dynamics

, Volume 69, Issue 8, pp 967–987 | Cite as

Hydrodynamic time parameters response to meteorological and physical forcings: toward a stagnation risk assessment device in coastal areas

  • Marion Drouzy
  • Pascal Douillet
  • Jean-Michel Fernandez
  • Christel Pinazo
Article
Part of the following topical collections:
  1. Topical Collection on the 19th Joint Numerical Sea Modelling Group Conference, Florence, Italy, 17-19 October 2018

Abstract

Identifying zones of stagnation and deposition of terrigenous matter or contaminants induced by human activity is a key issue in coastal areas. In this paper, circulation processes and potential contaminant stagnation and deposition zones were assessed using hydrodynamic time parameters forced with meteorology. The study focused on an Eulerian time parameter, the local e-flushing time (eFT). The hydrodynamic modeling of coastal zones was applied to two bays of New Caledonia, located downstream of open mining sites. Numerous simulations were performed to classify the influence of forcing conditions on the eFT variability. The need to consider meteorological forcings rather than average weather conditions for the calculation of eFTs was demonstrated. In coastal zones, high wind velocity was the major forcing influencing eFTs, but below a threshold wind velocity, tidal range and river inputs became significant parameters. Spatial variations of eFT values, depending on meteorological conditions, induced varying risks of stagnation zones. General responses of the bays’ hydrodynamics and the exposure of zones to potential contaminants were defined under various forcings. Our findings demonstrate that strong turbulence zones are not always characterized by short eFTs because of antagonistic forcing effects. Diurnal tidal alternations were also proven to have less influence on eFT variations than tidal range changes over a lunar cycle.

Keywords

Residence time Coastal hydrodynamic modeling Meteorological forcings Mining industry Stagnation zones Deposition 

Notes

Acknowledgments

This work was partly supported by a CIFRE grant (no. 2015/0175) awarded by the French ANRT (National Association for Technologic Research). The funding scheme was not involved in the study design or submission. The authors would like to warmly thank the whole maritime staff for their support, and laboratory colleagues whose help was truly appreciated.

References

  1. Abdelrhman MA (2005) Simplified modeling of flushing and residence times in 42 embayments in New England, USA, with special attention to Greenwich Bay, Rhode Island. Estuar Coast Shelf Sci 62(1–2):339–351CrossRefGoogle Scholar
  2. Andréfouët S, Pages J, Tartinville B (2001) Water renewal time for classification of atoll lagoons in the Tuamotu archipelago (French Polynesia). Coral Reefs 20(4):399–408CrossRefGoogle Scholar
  3. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Three-Dimensional Coastal Ocean Models, vol. 4, p. 1–16Google Scholar
  4. Boynton WR, Garber JH, Summers R et al (1995) Inputs, transformations, and transport of nitrogen and phosphorus in Chesapeake Bay and selected tributaries. Estuaries 18(1):285–314CrossRefGoogle Scholar
  5. Bum BK, Pick FR (1996) Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol Oceanogr 41(7):1572–1577CrossRefGoogle Scholar
  6. Burchard H, Petersen O (1999) Models of turbulence in the marine environment—a comparative study of two-equation turbulence models. J Mar Syst 21(1–4):29–53CrossRefGoogle Scholar
  7. Cavalcante GH, Kjerfve B, Feary DA (2012) Examination of residence time and its relevance to water quality within a coastal mega-structure: the Palm Jumeirah Lagoon. J Hydrol 468:111–119CrossRefGoogle Scholar
  8. Cucco A, Umgiesser G, Ferrarin C et al (2009) Eulerian and Lagrangian transport time scales of a tidal active coastal basin. Ecol Model 220(7):913–922CrossRefGoogle Scholar
  9. de Brye B, de Brauwere A, Gourgue O et al (2012) Water renewal timescales in the Scheldt estuary. J Mar Syst 94:74–86CrossRefGoogle Scholar
  10. Deleersnijder E, Beckers JM (1992) On the use of the sigma-coordinate system in regions of large bathymetric variations. J Mar Syst 3(4–5):381–390.  https://doi.org/10.1016/0924-7963(92)90011-V CrossRefGoogle Scholar
  11. Delesalle B, Sournia A (1992) Residence time of water and phytoplankton biomass in coral reef lagoons. Cont Shelf Res 12(7–8):939–949CrossRefGoogle Scholar
  12. Delhez E, Deleersnijder E (2012) Residence and exposure times: when diffusion does not matter. Ocean Dyn 62(10–12):1399–1407CrossRefGoogle Scholar
  13. Delhez EJM, Heemink AW, Deleersnijder É (2004) Residence time in a semi-enclosed domain from the solution of an adjoint problem. Estuar Coast Shelf Sci 61(4):691–702CrossRefGoogle Scholar
  14. Delhez ÉJM, De Brye B, De Brauwere A et al (2014) Residence time vs influence time. J Mar Syst 132:185–195CrossRefGoogle Scholar
  15. Dettmann EH (2001) Effect of water residence time on annual export and denitrification of nitrogen in estuaries: a model analysis. Estuaries 24(4):481–490CrossRefGoogle Scholar
  16. Douillet P (1998) Tidal dynamics of the south-west lagoon of New Caledonia: observations and 2D numerical modelling. Oceanol Acta 21(1):69–79CrossRefGoogle Scholar
  17. Douillet P, Ouillon S, Cordier E (2001) A numerical model for fine suspended sediment transport in the southwest lagoon of New Caledonia. Coral Reefs 20(4):361–372CrossRefGoogle Scholar
  18. Douillet P, Le Gendre R, Derex P (2008) Etude sur le comportement, la dispersion et les effets biologiques des effluents industriels dans le lagon Sud de la Nouvelle Calédonie: Modélisation et simulation du transport des formes dissoutes et particulaire. Modèle hydrodynamique: Notice technique-validation. French Technical notice 2008. Rapport de la convention de recherches IRD/Goro-Ni 1124, 54pGoogle Scholar
  19. Du J, Shen J (2016) Water residence time in Chesapeake Bay for 1980–2012. J Mar Syst 164:101–111CrossRefGoogle Scholar
  20. Duhaut T, Honnorat M, Debreu L (2008) Développements numériques pour le modèle MARS. Rapport PREVIMER contrat N06/2 210 290Google Scholar
  21. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204CrossRefGoogle Scholar
  22. Faure V, Pinazo C, Torréton J-P et al (2010a) Modelling the spatial and temporal variability of the SW lagoon of New Caledonia I: a new biogeochemical model based on microbial loop recycling. Mar Pollut Bull 61(7–12):465–479CrossRefGoogle Scholar
  23. Faure V, Pinazo C, Torréton J-P et al (2010b) Modelling the spatial and temporal variability of the SW lagoon of New Caledonia II: realistic 3D simulations compared with in situ data. Mar Pollut Bull 61(7–12):480–502CrossRefGoogle Scholar
  24. Fernandez J-M, Ouillon S, Chevillon C et al (2006) A combined modelling and geochemical study of the fate of terrigenous inputs from mixed natural and mining sources in a coral reef lagoon (New Caledonia). Mar Pollut Bull 52(3):320–331CrossRefGoogle Scholar
  25. Fichez R, Chifflet S, Douillet P et al (2010) Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia). Mar Pollut Bull 61(7–12):309–322 Probabilistic approach of water residence time and connectivity using Markov chains with application to tidal embayments C. Bacher a, ⁎, R. Filgueira b , T. GuyondetCrossRefGoogle Scholar
  26. Fuchs R (2013) Modélisation de la chlorophylle de surface du lagon de Nouvelle Calédonie comme indicateur de l'état de santé de zones récifales côtières. Thèse de doctorat. (French PhD) Aix-MarseilleGoogle Scholar
  27. Fuchs R, Dupouy C, Douillet P, Caillaud M, Dumas F, Mangin A, Pinazo C (2012) Modelling La Niña event impact on a South West Pacific Lagoon (New Caledonia). Mar Pollut Bull 64:1596–1613CrossRefGoogle Scholar
  28. Fuchs R, Pinazo C, Douillet P, Fraysse M, Grenz C, Mangin A, Dupouy C (2013) Modeling the ocean-lagoon interaction during upwelling processes on the south west of New Caledonia. Estuar Coast Shelf Sci 135:5–17CrossRefGoogle Scholar
  29. Gallagher BS, Shimada KM, Gonzalez FI Jr, et al (1971) Tides and currents in Fanning Atoll lagoonGoogle Scholar
  30. Gómez-Gesteira M, Prego R et al (2003) Dependence of the water residence time in Ria of Pontevedra (NW Spain) on the seawater inflow and the river discharge. Estuar Coast Shelf Sci 58(3):567–573CrossRefGoogle Scholar
  31. Green RH, Lowe RJ, Buckley ML (2018) Hydrodynamics of a tidally forced coral reef atoll. J Geophys Res OceansGoogle Scholar
  32. Grifoll M, Del Campo A, Espino M et al (2013) Water renewal and risk assessment of water pollution in semi-enclosed domains: application to Bilbao harbour (Bay of Biscay). J Mar Syst 109:S241–S251CrossRefGoogle Scholar
  33. Hatje V, Attisano KK, De Souza MFL et al (2017) Applications of radon and radium isotopes to determine submarine groundwater discharge and flushing times in Todos os Santos Bay, Brazil. J Environ Radioact 178:136–146CrossRefGoogle Scholar
  34. Hedström KS (2009) Technical manual for a coupled sea-ice/ocean circulation model (version 3). US Department of the Interior, Minerals Management Service, Alaska OCS RegionGoogle Scholar
  35. Josefson AB, Rasmussen B (2000) Nutrient retention by benthic macrofaunal biomass of Danish estuaries: importance of nutrient load and residence time. Estuar Coast Shelf Sci 50(2):205–216CrossRefGoogle Scholar
  36. Jouon A, Douillet P, Ouillon S et al (2006) Calculations of hydrodynamic time parameters in a semi-opened coastal zone using a 3D hydrodynamic model. Cont Shelf Res 26(12–13):1395–1415CrossRefGoogle Scholar
  37. Kraines SB, Yanagi T, Isobe M et al (1998) Wind-wave driven circulation on the coral reef at Bora Bay, Miyako Island. Coral Reefs 17(2):133–143CrossRefGoogle Scholar
  38. Kraines SB, Suzuki A, Yanagi T et al. (1999) Rapid water exchange between the lagoon and the open ocean at Majuro Atoll due to wind, waves, and tide. J. Geophys. Res. Oceans 104(C7):15635–15653Google Scholar
  39. Kraines SB, Isobe M, Komiyama H (2001) Seasonal variations in the exchange of water and water-borne particles at Majuro atoll, the Republic of the Marshall Islands. Coral Reefs 20(4):330–340CrossRefGoogle Scholar
  40. Lazure P, Dumas F (2008) An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31(2):233–250CrossRefGoogle Scholar
  41. Lazure P, Salomon J-C (1991a) Coupled 2-D and 3-D modeling of coastal hydrodynamics. Oceanol Acta 14(2):173–180Google Scholar
  42. Lazure P, Salomon J-C (1991b) Etude par modèles mathématiques de la circulation marine entre Quiberon et Noirmoutier. Oceanol Acta 11:93–99Google Scholar
  43. Le Borgne R, Douillet P, Fichez R et al (2010) Hydrography and plankton temporal variabilities at different time scales in the southwest lagoon of New Caledonia: A review. Mar Pollut Bull 61(7–12):297–308CrossRefGoogle Scholar
  44. Lefèvre J, Marchesiello P, Jourdain NC et al (2010) Weather regimes and orographic circulation around New Caledonia. Mar Pollut Bull 61(7–12):413–431CrossRefGoogle Scholar
  45. Mahanty MM, Mohanty PK, Pattnaik AK et al (2016) Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: measurement and modeling. Cont Shelf Res 125:28–43CrossRefGoogle Scholar
  46. Monsen NE, Cloern JE, Lucas LV et al (2002) A comment on the use of flushing time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553CrossRefGoogle Scholar
  47. Muñoz Caravaca A, Douillet P, Diaz Garcia O et al (2012) Flushing time in the Cienfuegos bay, Cuba. Nat Resour Model 25(3):434–455CrossRefGoogle Scholar
  48. Ouillon S, Douillet P, Andréfouët S (2004) Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia. Coral Reefs 23(1):109–122CrossRefGoogle Scholar
  49. Ouillon S, Douillet P, Lefebvre J-P et al (2010) Circulation and suspended sediment transport in a coral reef lagoon: the south-west lagoon of New Caledonia. Mar Pollut Bull 61(7–12):269–296CrossRefGoogle Scholar
  50. Ouillon S, Petrenko AA (2005) Above-water measurements of reflectance and chlorophyll-a algorithms in the Gulf of Lions, NW Mediterranean Sea. Optics Express 13(7):2531–2548Google Scholar
  51. Pagès J, Andrefouët S, Delesalle B et al (2001) Hydrology and trophic state in Takapoto atoll lagoon: comparison with other Tuamotu lagoons. Aquat Living Resour 14(3):183–193CrossRefGoogle Scholar
  52. Pinazo C, Bujan S, Douillet P et al (2004) Impact of wind and freshwater inputs on phytoplankton biomass in the coral reef lagoon of New Caledonia during the summer cyclonic period: a coupled three-dimensional biogeochemical modeling approach. Coral Reefs 23(2):281–296CrossRefGoogle Scholar
  53. Plus M, Chapelle A, Lazure P et al (2003) Modelling of oxygen and nitrogen cycling as a function of macrophyte community in the Thau lagoon. Cont Shelf Res 23(17–19):1877–1898CrossRefGoogle Scholar
  54. Plus M, Dumas F, Stanisière J-Y et al (2009) Hydrodynamic characterization of the Arcachon Bay, using model-derived descriptors. Cont Shelf Res 29(8):1008–1013CrossRefGoogle Scholar
  55. Rasmussen B, Josefson AB (2002) Consistent estimates for the residence time of micro-tidal estuaries. Estuar Coast Shelf Sci 54(1):65–73CrossRefGoogle Scholar
  56. Rochelle-Newall EJ, Mari X, Pringault O (2010) Sticking properties of transparent exopolymeric particles (TEP) during aging and biodegradation. J Plankton Res 32(10):1433–1442CrossRefGoogle Scholar
  57. Rynne P, Reniers AD, Van De Kreeke J et al (2016) The effect of tidal exchange on residence time in a coastal embayment. Estuar Coast Shelf Sci 172:108–120CrossRefGoogle Scholar
  58. Safak I, Wiberg PL, Richardson DL et al (2015) Controls on residence time and exchange in a system of shallow coastal bays. Cont Shelf Res 97:7–20CrossRefGoogle Scholar
  59. Salinger MJ (1995) Southwest Pacific temperatures: trends in maximum and minimum temperatures. Atmos Res 37(1–3):87–99CrossRefGoogle Scholar
  60. Sánchez-Garrido JC, Lafuente JG, Sammartino S et al (2014) Meteorologically-driven circulation and flushing times of the Bay of Algeciras, Strait of Gibraltar. Mar Pollut Bull 80(1–2):97–106CrossRefGoogle Scholar
  61. Schallenberg M, Burns CW (1997) Phytoplankton biomass and productivity in two oligotrophic lakes of short hydraulic residence time. N Z J Mar Freshw Res 31(1):119–134CrossRefGoogle Scholar
  62. Shen J, Haas L (2004) Calculating age and residence time in the tidal York River using three-dimensional model experiments. Estuar Coast Shelf Sci 61(3):449–461.34CrossRefGoogle Scholar
  63. Takeoka H (1984) Fundamental concepts of exchange and transport time scales in a coastal sea. Cont Shelf Res 3(3):311–326CrossRefGoogle Scholar
  64. Thomann RV, Mueller JA (1987) Principles of surface water quality modeling and control. Harper & Row, New YorkGoogle Scholar
  65. Thomas Y, Dumas F, Andréfouët S (2014) Larval dispersal modeling of pearl oyster Pinctada margaritifera following realistic environmental and biological forcing in Ahe atoll lagoon. PloS One 9(4):e95050CrossRefGoogle Scholar
  66. Torréton J-P, Rochelle-Newall E, Jouon A et al (2007) Correspondence between the distribution of hydrodynamic time parameters and the distribution of biological and chemical variables in a semi-enclosed coral reef lagoon. Estuar Coast Shelf Sci 74(4):766–776CrossRefGoogle Scholar
  67. Wang C-F, Hsu M-H, Kuo AY (2004) Residence time of the Danshuei River estuary, Taiwan. Estuar Coast Shelf Sci 60(3):381–393CrossRefGoogle Scholar
  68. Weinbauer MG, Kerros M-E, Motegi C et al (2010) Bacterial community composition and potential controlling mechanisms along a trophic gradient in a barrier reef system. Aquat Microb Ecol 60(1):15–28CrossRefGoogle Scholar
  69. Wolanski E, Fabricius KE, Cooper TF et al (2008) Wet season fine sediment dynamics on the inner shelf of the great barrier reef. Estuar Coast Shelf Sci 77(4):755–776CrossRefGoogle Scholar
  70. Zimmerman JTF (1976) Mixing and flushing of tidal embayments in the western Dutch Wadden Sea part I: distribution of salinity and calculation of mixing time scales. Neth J Sea Res 10(2):149–191CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UMR110Aix Marseille UniversitéMarseilleFrance
  2. 2.AEL/LEANouméa CedexNew Caledonia
  3. 3.NouméaNew Caledonia

Personalised recommendations