Advertisement

Ocean Dynamics

, Volume 69, Issue 1, pp 59–81 | Cite as

Investigating suspended particulate matter in coastal waters using the fractal theory

  • Marion ChapalainEmail author
  • Romaric Verney
  • Michael Fettweis
  • Matthias Jacquet
  • David Le Berre
  • Pierre Le Hir
Article
Part of the following topical collections:
  1. Topical Collection on the 14th International Conference on Cohesive Sediment Transport in Montevideo, Uruguay 13-17 November 2017

Abstract

Suspended particulate matters (SPM) in coastal waters were investigated with an approach combining suspended particulate matter concentrations (SPMCs) measured by an optical backscatter sensor (OBS), particle size distributions measured by a laser in situ scattering transmissometer (LISST), and the fractal theory. The aim was to investigate whether changes in the fractal dimension indicate variations in the SPM composition. The method relies on the fractal theory that relates the floc excess density ∆ρ to the ratio between floc size Df and primary particle size Dp as follows: Δρ = (ρp – ρw)[Df/Dp]nf − 3. The best-fit fractal dimension nf was determined by matching the OBS-derived SPMC and the SPMC calculated from the LISST assuming fixed primary particle size and density. This method was applied to measurements from four tidal cycles characterized by different organic matter (OM) contents. Spurious data caused by schlieren were identified and discarded. The fractal dimension was relatively homogeneous over each tidal cycle except one where a strong apparent decrease in the fractal dimension was related to an important episode of sediment resuspension. This apparent decrease could result from the limit of the LISST to measure valid data when SPMC is high enough to induce multiple scattering and/or a change in the SPM population in suspension. Results showed also strong differences between the tidal cycles such as an increase of the fractal dimension with increasing OM content. Sensitivity analyses of fractal dimension and settling velocity were performed on major parameters: primary particle size and density, slope of the OBS calibration relationship, and optical model of inversion of the LISST. Results showed that the assumed primary particle size and the OBS calibration relationship significantly affect fractal dimension and settling velocity calculations.

Keywords

Suspended sediment Fractal dimension LISST Particle size Particle density Organic matter 

Notes

Acknowledgements

Two anonym reviewers are thanked for their fruitful comments that enabled many improvements of the paper.

Funding information

This study was funded by the Belgian Science Policy Office, for the BRAIN-be (Belgian Research Action through Interdisciplinary Networks) INDI67 research project, coordinated by the Royal Belgian Institute of Natural Sciences with the participation of the Katholieke Universiteit Leuven and IFREMER. The field campaigns were carried out with the research vessel Côtes de la Manche funded by the CNRS-INSU.

References

  1. Agrawal YC, Pottsmith HC (2000) Instruments for particle size and settling velocity observations in sediment transport. Mar Geol 168:89–114.  https://doi.org/10.1016/S0025-3227(00)00044-X CrossRefGoogle Scholar
  2. Agrawal YC, Whitmire A, Mikkelsen Ole A, Pottsmith HC (2008) Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction. J Geophys Res Oceans 113.  https://doi.org/10.1029/2007JC004403
  3. Alldredge AL, Gotschalk C, Passow U, Riebesell U (1995) Mass aggregation of diatom blooms: insights from a mesocosm study. Deep Sea Res II Top Stud Oceanogr 42:9–27.  https://doi.org/10.1016/0967-0645(95)00002-8 CrossRefGoogle Scholar
  4. Aminot A, Guillaud J-F, Kerouel R (1997) La baie de Seine: hydrologie, nutriments, chlorophille (1978–1994). Edition IFREMER, Repères Océan, 14, p 148Google Scholar
  5. Andrews S, Nover D, Schladow SG (2010) Using laser diffraction data to obtain accurate particle size distributions: the role of particle composition. Limnol Oceanogr Methods 8:507–526.  https://doi.org/10.4319/lom.2010.8.507 CrossRefGoogle Scholar
  6. Andrews SW, Nover DM, Reuter JE, Schladow SG (2011) Limitations of laser diffraction for measuring fine particles in oligotrophic systems: pitfalls and potential solutions. Water Resour Res 47.  https://doi.org/10.1029/2010WR009837
  7. Avoine J (1981) L’estuaire de la Seine: sédiments et dynamique sédimentaire. Thèse de 3ème cycle, Université de Caen, p 236Google Scholar
  8. Avoine J (1985) Evaluation des apports fluviatiles dans l'estuaire de la Seine. La Baie de Seine. Colloque National du CNRS, 24-26 avril 1985, BrestGoogle Scholar
  9. Avoine J (1987) Sediment exchanges between the Seine estuary and its adjacent shelf. J Geol Soc 144:135CrossRefGoogle Scholar
  10. Bainbridge ZT, Wolanski E, Álvarez-Romero JG, Lewis SE, Brodie JE (2012) Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia. Mar Pollut Bull 65:236–248.  https://doi.org/10.1016/j.marpolbul.2012.01.043 CrossRefGoogle Scholar
  11. Bass SJ (2000) Sand and mud dynamics in shelf seas. Univ. of Cambridge, CambridgeGoogle Scholar
  12. Bass SJ, Aldridge JN, McCave IN, Vincent CE (2002) Phase relationships between fine sediment suspensions and tidal currents in coastal seas. J Geophys Res Oceans 107:10-11–10-14.  https://doi.org/10.1029/2001JC001269 CrossRefGoogle Scholar
  13. Battisto GM, Friedrichs CT, Miller HC, Resio DT (1999) Response of OBS to mixed grain-size suspensions during SandyDuck ‘97. In: Kraus NC, McDougal WG (eds) Coastal sediments 1999. American Society of Civil Engineers, Reston, pp 297–312Google Scholar
  14. Boss E, Slade W, Hill P (2009) Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass. Opt Express 17:9408–9420.  https://doi.org/10.1364/OE.17.009408 CrossRefGoogle Scholar
  15. Bowers DG, McKee D, Jago CF, Nimmo-Smith WAM (2017) The area-to-mass ratio and fractal dimension of marine flocs. Estuar Coast Shelf Sci 189:224–234.  https://doi.org/10.1016/j.ecss.2017.03.026 CrossRefGoogle Scholar
  16. Braithwaite KM, Bowers DG, Nimmo Smith WAM, Graham GW, Agrawal YC, Mikkelsen OA (2010) Observations of particle density and scattering in the Tamar Estuary. Mar Geol 277:1–10.  https://doi.org/10.1016/j.margeo.2010.06.008 CrossRefGoogle Scholar
  17. Brylinski JM, Lagadeuc Y, Gentilhomme V, Dupont JP, Lafite R, Dupeuble PA, Huault, MF, Auger Y, Puskaric E, Wartel M, Cabioch L (1991) Le “fleuve cotier”: un phenomene hydrologique important en Manche Orientale (exemple du Pas de Calais). Oceanol Acta 11:197–203Google Scholar
  18. Campbell Scientific INC (2014) OBS-3+ and OBS300 suspended solids and turbidity monitors – instruction manual. Available on Web at: https://s.campbellsci.com/documents/au/manuals/obs-3+.pdf. Accessed 17 May 2016
  19. Chakraborti RK, Gardner KH, Atkinson JF, Van Benschoten JE (2003) Changes in fractal dimension during aggregation. Water Res 37:873–883.  https://doi.org/10.1016/S0043-1354(02)00379-2 CrossRefGoogle Scholar
  20. Chen S, Eisma D (1995) Fractal geometry of in situ flocs in the estuarine and coastal environments. Neth J Sea Res 33:173–182.  https://doi.org/10.1016/0077-7579(95)90004-7 CrossRefGoogle Scholar
  21. Davies EJ, Nimmo-Smith WAM, Agrawal YC, Souza AJ (2011) Scattering signatures of suspended particles: an integrated system for combining digital holography and laser diffraction. Opt Express 19:25488–25499.  https://doi.org/10.1364/OE.19.025488 CrossRefGoogle Scholar
  22. Davies EJ, Nimmo-Smith WAM, Agrawal YC, Souza AJ (2012) LISST-100 response to large particles. Mar Geol 307–310:117–122.  https://doi.org/10.1016/j.margeo.2012.03.006 CrossRefGoogle Scholar
  23. Dilligeard É (1997) Télédétection des eaux du cas II: caractérisation des sédiments marins, vol 1. Thèse de coctorat Lasers, Molécules et Rayonnement atmosphérique Littotal, p 184Google Scholar
  24. Downing J (2006) Twenty-five years with OBS sensors: the good, the bad, and the ugly. Cont Shelf Res 26:2299–2318.  https://doi.org/10.1016/j.csr.2006.07.018 CrossRefGoogle Scholar
  25. Droppo IG, Ongley ED (1992) The state of suspended sediment in the freshwater fluvial environment: a method of analysis. Water Res 26:65–72.  https://doi.org/10.1016/0043-1354(92)90112-H CrossRefGoogle Scholar
  26. Druine F, Verney R, Deloffre J, Lemoine J-P, Chapalain M, Landemaine V, Lafite R (2018) In situ high frequency long term measurements of suspended sediment concentration in turbid estuarine system (Seine Estuary, France): optical turbidity sensors response to suspended sediment characteristics. Mar Geol 400:24–37.  https://doi.org/10.1016/j.margeo.2018.03.003 CrossRefGoogle Scholar
  27. Dupont JP, Lafite R, Huault MF, Dupeuble PA, Brilynski JM, Guegueniat P, Lamboy M, Cabioch L (1991) La dynamique des masses d’eaux et des matieres en suspension en Manche Orientale. Oceanol Acta 11:177–186Google Scholar
  28. Dyer KR (1989) Sediment processes in estuaries: Future research requirements. J Geophys Res 94:14327.  https://doi.org/10.1029/JC094iC10p14327 CrossRefGoogle Scholar
  29. Dyer KR, Manning AJ (1999) Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. J Sea Res 41:87–95.  https://doi.org/10.1016/S1385-1101(98)00036-7 CrossRefGoogle Scholar
  30. Eisma D (1986) Flocculation and de-flocculation of suspended matter in estuaries. Neth J Sea Res 20:183–199.  https://doi.org/10.1016/0077-7579(86)90041-4 CrossRefGoogle Scholar
  31. Engel A (2000) The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. J Plankton Res 22:485–497.  https://doi.org/10.1093/plankt/22.3.485 CrossRefGoogle Scholar
  32. Fall KA, Friedrichs CT, Massey GM, Bowers DG, Smith J (2018) The importance of organic matter content to fractal particle properties in estuarine surface waters as constrained by floc excess density, floc apparent density, and primary particle bulk density: insights from video settling, LISST, and pump sampling. Paper presented at the Submitted to Fall American Geophysical Union Meeting, Washington, DC, 10–14 December 2018Google Scholar
  33. Felix D, Albayrak I, Boes RM (2013) Laboratory investigation on measuring suspended sediment by portable laser diffractometer (LISST) focusing on particle shape. Geo-Mar Lett 33:485–498.  https://doi.org/10.1007/s00367-013-0343-1 CrossRefGoogle Scholar
  34. Felix D, Albayrak I, Boes RM (2018) In-situ investigation on real-time suspended sediment measurement techniques: turbidimetry, acoustic attenuation, laser diffraction (LISST) and vibrating tube densimetry. Int J Sediment Res 33:3–17.  https://doi.org/10.1016/j.ijsrc.2017.11.003 CrossRefGoogle Scholar
  35. Fennessy MJ, Dyer KR, Huntley DA (1994) inssev: an instrument to measure the size and settling velocity of flocs in situ. Mar Geol 117:107–117.  https://doi.org/10.1016/0025-3227(94)90009-4 CrossRefGoogle Scholar
  36. Fettweis M (2008) Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements. Estuar Coast Shelf Sci 78:426–436.  https://doi.org/10.1016/j.ecss.2008.01.007 CrossRefGoogle Scholar
  37. Fettweis M, Baeye M (2015) Seasonal variation in concentration, size, and settling velocity of muddy marine flocs in the benthic boundary layer. J Geophys Res Oceans 120:5648–5667.  https://doi.org/10.1002/2014jc010644 CrossRefGoogle Scholar
  38. Fettweis M, Lee JB (2017) Spatial and seasonal variation of biomineral suspended particulate matter properties in high-turbid nearshore and low-turbid offshore zones. Water 9:694.  https://doi.org/10.3390/w9090694 CrossRefGoogle Scholar
  39. Fettweis M, Francken F, Pison V, Van den Eynde D (2006) Suspended particulate matter dynamics and aggregate sizes in a high turbidity area. Mar Geol 235:63–74.  https://doi.org/10.1016/j.margeo.2006.10.005 CrossRefGoogle Scholar
  40. Fettweis M, Baeye M, Lee BJ, Chen PH, Yu JCS (2012) Hydro-meteorological influences and multimodal suspended particle size distributions in the Belgian nearshore area (southern North Sea). Geo-Mar Lett 32:123–137.  https://doi.org/10.1007/s00367-011-0266-7 CrossRefGoogle Scholar
  41. Fettweis M, Baeye M, Van der Zande D, Van den Eynde D, Lee BJ (2014) Seasonality of floc strength in the southern North Sea. J Geophys Res-Oceans 119:1911–1926.  https://doi.org/10.1002/2013jc009750 CrossRefGoogle Scholar
  42. Gartner JW, Cheng RT, Wang P-F, Richter K (2001) Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations. Mar Geol 175:199–219.  https://doi.org/10.1016/S0025-3227(01)00137-2 CrossRefGoogle Scholar
  43. Gomes C, Selman B (1999) On the fine structure of large search spaces. In: Proceedings 11th International Conference on Tools with Artificial Intelligence, 9–11 Nov. 1999, pp 197–201.  https://doi.org/10.1109/TAI.1999.809786
  44. Graham GW, Nimmo Smith WAM (2010) The application of holography to the analysis of size and settling velocity of suspended cohesive sediments. Limnol Oceanogr Methods 8:1–15.  https://doi.org/10.4319/lom.2010.8.1 CrossRefGoogle Scholar
  45. Graham GW, Davies EJ, Nimmo-Smith WAM, Bowers DG, Braithwaite KM (2012) Interpreting LISST-100X measurements of particles with complex shape using digital in-line holography. J Geophys Res Oceans 117.  https://doi.org/10.1029/2011JC007613
  46. Grasso F, Verney R, le Hir P, Thouvenin B, Schulz E, Kervella Y, Khojasteh Pour Fard I, Lemoine JP, Dumas F, Garnier V (2017) Suspended sediment dynamics in the macrotidal seine estuary (France): 1. Numerical modeling of turbidity maximum dynamics. J Geophys Res Oceans 123:558–577.  https://doi.org/10.1002/2017JC013185 CrossRefGoogle Scholar
  47. Green MO, Boon JD (1993) The measurement of constituent concentrations in nonhomogeneous sediment suspensions using optical backscatter sensors. Mar Geol 110:73–81.  https://doi.org/10.1016/0025-3227(93)90106-6 CrossRefGoogle Scholar
  48. Guézennec L (1999) Hydrodynamique et transport en suspension du matériel particulaire fin dans la zone fluviatile d’un estuaire macrotidal: l’exemple de l’estuaire de la Seine (France). Thèse de l’Université de Rouen, p 240Google Scholar
  49. Guillén J, Palanques A, Puig P, Durrieu de Madron X, Nyffeler F (2000) Field calibration of optical sensors for measuring suspended sediment concentration in the western Mediterranean. Sci Mar 64(4).  https://doi.org/10.3989/scimar200064n4427
  50. Guo C, He Q, van Prooijen BC, Guo L, Manning AJ, Bass S (2018) Investigation of flocculation dynamics under changing hydrodynamic forcing on an intertidal mudflat. Mar Geol 395:120–132.  https://doi.org/10.1016/j.margeo.2017.10.001 CrossRefGoogle Scholar
  51. Hamm CE (2002) Interactive aggregation and sedimentation of diatoms and clay-sized lithogenic material. Limnol Oceanogr 47:1790–1795.  https://doi.org/10.4319/lo.2002.47.6.1790 CrossRefGoogle Scholar
  52. Hill PS, Syvitski JP, Cowan EA, Powell RD (1998) In situ observations of floc settling velocities in Glacier Bay, Alaska. Mar Geol 145:85–94.  https://doi.org/10.1016/S0025-3227(97)00109-6 CrossRefGoogle Scholar
  53. Holdaway GP, Thorne PD, Flatt D, Jones SE, Prandle D (1999) Comparison between ADCP and transmissometer measurements of suspended sediment concentration. Cont Shelf Res 19:421–441.  https://doi.org/10.1016/S0278-4343(98)00097-1 CrossRefGoogle Scholar
  54. Howarth MJ, Dyer KR, Joint IR, Hydes DJ, Purdie DA, Edmunds H, Jones JE, Lowry RK, Moffat TJ, Pomroy AJ, Proctor R (1993) Seasonal cycles and their spatial variability [and discussion]. Philos Trans R Soc A Math Phys Eng Sci 343:383–403.  https://doi.org/10.1098/rsta.1993.0054 Google Scholar
  55. Jago CF, Kennaway GM, Novarino G, Jones SE (2007) Size and settling velocity of suspended flocs during a Phaeocystis bloom in the tidally stirred Irish Sea, NW European shelf. Mar Ecol Prog Ser 345:51–62CrossRefGoogle Scholar
  56. Karageorgis A, Georgopoulos D, Gardner W, Mikkelsen O, Velaoras D (2015) How schlieren affects beam transmissometers and LISST-Deep: an example from the stratified Danube River delta, NW Black Sea. Mediterr Mar Sci 16(2).  https://doi.org/10.12681/mms.1116
  57. Khelifa A, Hill PS (2006) Models for effective density and settling velocity of flocs. J Hydraul Res 44:390–401.  https://doi.org/10.1080/00221686.2006.9521690 CrossRefGoogle Scholar
  58. Kilps JR, Logan BE, Alldredge AL (1994) Fractal dimensions of marine snow determined from image analysis of in situ photographs. Deep Sea ResI Oceanogr Res Pap 41:1159–1169.  https://doi.org/10.1016/0967-0637(94)90038-8 CrossRefGoogle Scholar
  59. Kineke GC, Sternberg RW (1992) Measurements of high concentration suspended sediments using the optical backscatterance sensor. Mar Geol 108:253–258.  https://doi.org/10.1016/0025-3227(92)90199-R CrossRefGoogle Scholar
  60. Kranenburg C (1994) The fractal structure of cohesive sediment aggregates. Estuar Coast Shelf Sci 39:451–460.  https://doi.org/10.1016/S0272-7714(06)80002-8 CrossRefGoogle Scholar
  61. Krone RB (1963) A study of rheologic properties of estuarine sediments. Report No. 63-8. Hydraulic Engineering Laboratory and Sanitary Engineering Laboratory, University of California, BerkeleyGoogle Scholar
  62. Lancelot C et al (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambio 16:38–46Google Scholar
  63. Landemaine V (2016) Erosion des sols et transferts sédimentaires sur les bassins versants de l’Ouest du Bassin de Paris : analyse, quantification et modélisation à l’échelle pluriannelle. University of RouenGoogle Scholar
  64. Le Floch J-F (1961) Propagation de la marée dans l’estuaire de la Seine et en Seine-Maritime., Thèse d’Etat de la Faculté des sciences de l’Université de ParisGoogle Scholar
  65. Le Hir P, Silva Jacinto R (2001) Courants, vagues et marées: les mouvements de l’eau. Fascicule Seine-Aval 1.2, p 32 pGoogle Scholar
  66. Lesourd S, Lesueur P, Brun-Cottan J-C, Auffret J-P, Poupinet N, Laignel B (2001) Morphosedimentary evolution of the macrotidal Seine estuary subjected to human impact. Estuaries 24:940.  https://doi.org/10.2307/1353008 CrossRefGoogle Scholar
  67. Lesourd S, Lesueur P, Brun-Cottan JC, Garnaud S, Poupinet N (2003) Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary (the Seine inlet, France). Estuar Coast Shelf Sci 58:3–16.  https://doi.org/10.1016/S0272-7714(02)00340-2 CrossRefGoogle Scholar
  68. Lesourd S, Lesueur P, Fisson C, Dauvin J-C (2016) Sediment evolution in the mouth of the Seine estuary (France): a long-term monitoring during the last 150years. Compt Rendus Geosci 348:442–450.  https://doi.org/10.1016/j.crte.2015.08.001 CrossRefGoogle Scholar
  69. Logan BE, Wilkinson DB (1990) Fractal geometry of marine snow and other biological aggregates. Limnol Oceanogr 35:130–136.  https://doi.org/10.4319/lo.1990.35.1.0130 CrossRefGoogle Scholar
  70. Logan BE, Passow U, Alldredge AL, Grossartt H-P, Simont M (1995) Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Res II Top Stud Oceanogr 42:203–214.  https://doi.org/10.1016/0967-0645(95)00012-F CrossRefGoogle Scholar
  71. Ludwig KA, Hanes DM (1990) A laboratory evaluation of optical backscatterance suspended solids sensors exposed to sand-mud mixtures. Mar Geol 94:173–179.  https://doi.org/10.1016/0025-3227(90)90111-V CrossRefGoogle Scholar
  72. Maggi F (2007) Variable fractal dimension: a major control for floc structure and flocculation kinematics of suspended cohesive sediment. J Geophys Res Oceans 112.  https://doi.org/10.1029/2006JC003951
  73. Maggi F (2009) Biological flocculation of suspended particles in nutrient-rich aqueous ecosystems. J Hydrol 376:116–125.  https://doi.org/10.1016/j.jhydrol.2009.07.040 CrossRefGoogle Scholar
  74. Maggi F (2013) The settling velocity of mineral, biomineral, and biological particles and aggregates in water. J Geophys Res Oceans 118:2118–2132.  https://doi.org/10.1002/jgrc.20086 CrossRefGoogle Scholar
  75. Maggi F, Tang FHM (2015) Analysis of the effect of organic matter content on the architecture and sinking of sediment aggregates. Mar Geol 363:102–111.  https://doi.org/10.1016/j.margeo.2015.01.017 CrossRefGoogle Scholar
  76. Maggi F, Mietta F, Winterwerp JC (2007) Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. J Hydrol 343:43–55.  https://doi.org/10.1016/j.jhydrol.2007.05.035 CrossRefGoogle Scholar
  77. Manning AJ (2001) A study of the effect of turbulence on the properties of flocculated mud. Ph.D. Thesis. Institue of Marine Studies, University of Plymouth, p 282Google Scholar
  78. Manning AJ, Dyer KR (1999) A laboratory examination of floc characteristics with regard to turbulent shearing. Mar Geol 160:147–170.  https://doi.org/10.1016/S0025-3227(99)00013-4 CrossRefGoogle Scholar
  79. Manning AJ, Baugh JV, Spearman JR, Whitehouse RJS (2010) Flocculation settling characteristics of mud: sand mixtures. Ocean Dyn 60:237–253.  https://doi.org/10.1007/s10236-009-0251-0 CrossRefGoogle Scholar
  80. Many G et al (2016) Particle assemblage characterization in the Rhone River ROFI. J Mar Syst 157:39–51.  https://doi.org/10.1016/j.jmarsys.2015.12.010 CrossRefGoogle Scholar
  81. Markussen TN, Andersen TJ (2013) A simple method for calculating in situ floc settling velocities based on effective density functions. Mar Geol 344:10–18.  https://doi.org/10.1016/j.margeo.2013.07.002 CrossRefGoogle Scholar
  82. Meakin P (1991) Fractal aggregates in geophysics. Rev Geophys 29:317.  https://doi.org/10.1029/91rg00688 CrossRefGoogle Scholar
  83. Mehta AJ (1986) Characterization of cohesive sediment properties and transport processes in estuaries. In: Mehta AJ (ed) Estuarine cohesive sediment dynamics. Springer, New York, pp 290–325CrossRefGoogle Scholar
  84. Mikkelsen OA, Pejrup M (2000) In situ particle size spectra and density of particle aggregates in a dredging plume. Mar Geol 170:443–459.  https://doi.org/10.1016/S0025-3227(00)00105-5 CrossRefGoogle Scholar
  85. Mikkelsen O, Pejrup M (2001) The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar Lett 20:187–195.  https://doi.org/10.1007/s003670100064 CrossRefGoogle Scholar
  86. Mikkelsen OA, Milligan TG, Hill PS, Moffatt D (2004) INSSECT—an instrumented platform for investigating floc properties close to the seabed. Limnol Oceanogr Methods 2:226–236.  https://doi.org/10.4319/lom.2004.2.226 CrossRefGoogle Scholar
  87. Mikkelsen OA, Hill PS, Milligan TG, Chant RJ (2005) In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera. Cont Shelf Res 25:1959–1978.  https://doi.org/10.1016/j.csr.2005.07.001 CrossRefGoogle Scholar
  88. Mikkelsen OA, Hill PS, Milligan TG (2006) Single-grain, microfloc and macrofloc volume variations observed with a LISST-100 and a digital floc camera. J Sea Res 55:87–102.  https://doi.org/10.1016/j.seares.2005.09.003 CrossRefGoogle Scholar
  89. Mikkelsen OA et al (2008) The influence of schlieren on in situ optical measurements used for particle characterization. Limnol Oceanogr Methods 6:133–143.  https://doi.org/10.4319/lom.2008.6.133 CrossRefGoogle Scholar
  90. Mitchener H, Torfs H (1996) Erosion of mud/sand mixtures. Coast Eng 29:1–25.  https://doi.org/10.1016/S0378-3839(96)00002-6 CrossRefGoogle Scholar
  91. Passow U (2002) Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 55:287–333.  https://doi.org/10.1016/S0079-6611(02)00138-6 CrossRefGoogle Scholar
  92. Passow U, Alldredge AL (1995) Aggregation of a diatom bloom in a mesocosm: the role of transparent exopolymer particles (TEP). Deep Sea Res II Top Stud Oceanogr 42:99–109.  https://doi.org/10.1016/0967-0645(95)00006-C CrossRefGoogle Scholar
  93. Pejrup M, Mikkelsen OA (2010) Factors controlling the field settling velocity of cohesive sediment in estuaries. Estuar Coast Shelf Sci 87:177–185.  https://doi.org/10.1016/j.ecss.2009.09.028 CrossRefGoogle Scholar
  94. Risović D (1998) On correlation of fractal dimension of marine particles with depth. J Colloid Interface Sci 197:391–394.  https://doi.org/10.1006/jcis.1997.5277 CrossRefGoogle Scholar
  95. Schoellhamer DH (2002) Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Cont Shelf Res 22:1857–1866.  https://doi.org/10.1016/S0278-4343(02)00042-0 CrossRefGoogle Scholar
  96. Schulz E, Grasso F, Le Hir P, Verney R, Thouvenin B (2017) Suspended sediment dynamics in the macrotidal seine estuary (France): 2. Numerical modeling of sediment fluxes and budgets under typical hydrological and meteorological conditions. J Geophys Res Oceans 123:578–600.  https://doi.org/10.1002/2016JC012638 CrossRefGoogle Scholar
  97. Sequoia (2008) LISST concentration limits. Article dated 29 August 2008, accessed 27 September 2013. http://www.sequoiasci.com/article/lisst-concentration-limits/
  98. Smith SJ, Friedrichs CT (2011) Size and settling velocities of cohesive flocs and suspended sediment aggregates in a trailing suction hopper dredge plume. Cont Shelf Res 31:S50–S63.  https://doi.org/10.1016/j.csr.2010.04.002 CrossRefGoogle Scholar
  99. Smith SJ, Friedrichs CT (2015) Image processing methods for in situ estimation of cohesive sediment floc size, settling velocity, and density. Limnol Oceanogr Methods 13:250–264.  https://doi.org/10.1002/lom3.10022 CrossRefGoogle Scholar
  100. Son M, Hsu T-J (2008) Flocculation model of cohesive sediment using variable fractal dimension. Environ Fluid Mech 8:55–71.  https://doi.org/10.1007/s10652-007-9050-7 CrossRefGoogle Scholar
  101. Spicer PT, Pratsinis SE, Raper J, Amal R, Bushell G, Meesters G (1998) Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technol 97:26–34.  https://doi.org/10.1016/S0032-5910(97)03389-5 CrossRefGoogle Scholar
  102. Sternberg RW, Ogston A, Johnson R (1996) A video system for in situ measurement of size and settling velocity of suspended particulates. J Sea Res 36:127–130.  https://doi.org/10.1016/S1385-1101(96)90782-0 CrossRefGoogle Scholar
  103. Styles R (2006) Laboratory evaluation of the LISST in a stratified fluid. Mar Geol 227:151–162.  https://doi.org/10.1016/j.margeo.2005.11.011 CrossRefGoogle Scholar
  104. Tang FHM, Maggi F (2016) A mesocosm experiment of suspended particulate matter dynamics in nutrient- and biomass-affected waters. Water Res 89:76–86.  https://doi.org/10.1016/j.watres.2015.11.033 CrossRefGoogle Scholar
  105. Tao J, Hill PS, Boss ES, Milligan TG (2017) Evaluation of optical proxies for suspended particulate mass in stratified waters. J Atmos Ocean Technol 34:2203–2212.  https://doi.org/10.1175/JTECH-D-17-0042.1 CrossRefGoogle Scholar
  106. Traykovski P, Latter RJ, Irish JD (1999) A laboratory evaluation of the laser in situ scattering and transmissometery instrument using natural sediments. Mar Geol 159:355–367.  https://doi.org/10.1016/S0025-3227(98)00196-0 CrossRefGoogle Scholar
  107. van Ledden M, van Kesteren WGM, Winterwerp JC (2004) A conceptual framework for the erosion behaviour of sand–mud mixtures. Cont Shelf Res 24:1–11.  https://doi.org/10.1016/j.csr.2003.09.002 CrossRefGoogle Scholar
  108. Van Leussen W (1994) Estuarine macroflocs and their role in fine-grained sediment transport Ph D Thesis, University of UtrechtGoogle Scholar
  109. Van Leussen W, Cornelisse JM (1993) The determination of the sizes and settling velocities of estuarine flocs by an underwater video system. Neth J Sea Res 31:231–241.  https://doi.org/10.1016/0077-7579(93)90024-M CrossRefGoogle Scholar
  110. van Rijn LC (1984) Sediment transport, Part II: suspended load transport. J Hydraul Eng 110:1613–1641.  https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613) CrossRefGoogle Scholar
  111. Verney R, Lafite R, Brun-Cottan J-C (2009) Flocculation potential of estuarine particles: the importance of environmental factors and of the spatial and seasonal variability of suspended particulate matter. Estuar Coasts 32:678–693.  https://doi.org/10.1007/s12237-009-9160-1 CrossRefGoogle Scholar
  112. Verney R, Lafite R, Claude Brun-Cottan J, Le Hir P (2011) Behaviour of a floc population during a tidal cycle: laboratory experiments and numerical modelling. Cont Shelf Res 31:S64–S83.  https://doi.org/10.1016/j.csr.2010.02.005 CrossRefGoogle Scholar
  113. Waeles B, Le Hir P, Lesueur P, Delsinne N (2007) Modelling sand/mud transport and morphodynamics in the Seine river mouth (France): an attempt using a process-based approach. Hydrobiologia 588:69–82.  https://doi.org/10.1007/s10750-007-0653-2 CrossRefGoogle Scholar
  114. Wheatcroft RA, Butman CA (1997) Spatial and temporal variability in aggregated grain-size distributions, with implications for sediment dynamics. Cont Shelf Res 17:367–390.  https://doi.org/10.1016/S0278-4343(96)00035-0 CrossRefGoogle Scholar
  115. Winterwerp JC (1998) A simple model for turbulence induced flocculation of cohesive sediment. J Hydraul Res 36:309–326.  https://doi.org/10.1080/00221689809498621 CrossRefGoogle Scholar
  116. Winterwerp JC, Manning AJ, Martens C, de Mulder T, Vanlede J (2006) A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuar Coast Shelf Sci 68:195–207.  https://doi.org/10.1016/j.ecss.2006.02.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marion Chapalain
    • 1
    Email author
  • Romaric Verney
    • 1
  • Michael Fettweis
    • 2
  • Matthias Jacquet
    • 1
  • David Le Berre
    • 1
  • Pierre Le Hir
    • 1
  1. 1.Laboratoire DYNECO-DHYSEDIFREMERPlouzanéFrance
  2. 2.Operational Directorate Natural EnvironmentRoyal Belgian Institute of Natural SciencesBrusselsBelgium

Personalised recommendations