Advertisement

Ocean Dynamics

, Volume 68, Issue 9, pp 1181–1190 | Cite as

Decadal evolution of tidal flats and channels in the Outer Weser estuary, Germany

  • Markus Benninghoff
  • Christian Winter
Article
Part of the following topical collections:
  1. Topical Collection on the 8th International conference on Coastal Dynamics, Helsingør, Denmark, 12-16 June 2017

Abstract

This study focuses on the medium scale morphodynamics of the tidal flat and channel system Fedderwarder Priel, located in the Outer Weser estuary (Wadden Sea, Germany). Tidal channels and adjacent flats are highly dynamic systems whose morphologic evolution are driven by tidal, wind, and wave forcings. These coastal environments are an important ecosystem and react to changes in hydrodynamic conditions in various spatial and temporal scales. Based on annual medium-resolution digital elevation models from 1998 to 2016, we describe changes in the surface area over depth with hypsometries and use vertical dynamic trends in order to analyze and visualize the morphologic evolution of the Fedderwarder Priel and adjacent tidal channels. It is shown that several intertidal flats rise in the order of 1.3 to 5.6 cm/year. The findings indicate that the Outer Weser estuary was not in an equilibrium state for the investigated period, and tidal flats accreted with a rate exceeding mean sea level rise.

Keywords

Tidal flat Hypsometry Morphology Time series Vertical dynamic trend Sediment budget 

Notes

Acknowledgments

The authors would like to express their gratitude to the Federal Maritime and Hydrographic Agency for providing the necessary data that formed the basis for elaborating this study. Furthermore, special thanks go to Prof. Peter Milbradt for providing additional data. We thank the two anonymous reviewers for their thorough review and helpful comments.

Funding information

This project is funded by the German Research Foundation via the International Research Training Group INTERCOAST.

References

  1. Arns A, Wahl T, Haigh ID, Jensen J, Pattiaratchi C (2013) Estimating extreme water level probabilities: a comparison of the direct methods and recommendations for best practise. Coast Eng 81:51–66.  https://doi.org/10.1016/j.coastaleng.2013.07.003 CrossRefGoogle Scholar
  2. Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C (2017) Sea-level rise induced amplification of coastal protection design heights. Sci Rep 7:40171.  https://doi.org/10.1038/srep40171 CrossRefGoogle Scholar
  3. Boon JD, Byrne RJ (1981) On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar Geol 40:27–48CrossRefGoogle Scholar
  4. Chu K, Winter C, Hebbeln D, Schulz M (2013) Improvement of morphodynamic modeling of tidal channel migration by nudging. Coast Eng 77:1–13.  https://doi.org/10.1016/j.coastaleng.2013.02.004 CrossRefGoogle Scholar
  5. de Vet PLM, van Prooijen BC, Wang ZB (2017) The differences in morphological development between the intertidal flats of the Eastern and Western Scheldt. Geomorphology 281:31–42.  https://doi.org/10.1016/j.geomorph.2016.12.031
  6. Dieckmann R, Osterthun M, Partenscky HW (1987) Influence of water-level elevation and tidal range on the sedimentation in a German tidal flat area. Prog Oceanogr 18:151–166.  https://doi.org/10.1016/0079-6611(87)90031-0 CrossRefGoogle Scholar
  7. Dissanayake DMPK (2011) Modelling morphological response of large tidal inlet systems to sea level rise: UNESCO-IHE PhD thesis. CRC PressGoogle Scholar
  8. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands J Sea Res 20:117–131CrossRefGoogle Scholar
  9. Eisma D (1998) Intertidal deposits: river mouth, tidal flats, and coastal lagoons. CRC Press, Bocoa Raton, FlaGoogle Scholar
  10. Elias EPL, Van Der Spek AJF, Wang ZB, De Ronde J (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Geol en Mijnbouw/Netherlands J Geosci 91:293–310.  https://doi.org/10.1017/S0016774600000457 CrossRefGoogle Scholar
  11. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647.  https://doi.org/10.1146/annurev.earth.35.031306.140139 CrossRefGoogle Scholar
  12. Friedrichs CT (2011) Tidal flat morphodynamics: a synthesis. In: Treatise on estuarine and coastal science. Elsevier Inc., pp 137–170Google Scholar
  13. Friedrichs CT, Aubrey DG (1996) Uniform bottom shear stress and equilibrium hypsometry of intertidal flats. Coast Estuar Stud 50:405–429.  https://doi.org/10.1029/CE050p0405 CrossRefGoogle Scholar
  14. Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions. Earth Surf Dyn 2:363–382.  https://doi.org/10.5194/esurf-2-363-2014 CrossRefGoogle Scholar
  15. Herrling G, Winter C (2017) Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Marine Lett 37:137–149.  https://doi.org/10.1007/s00367-016-0462-6 CrossRefGoogle Scholar
  16. Hibma A, Stive MJF, Wang ZB (2004) Estuarine morphodynamics. Coast Eng 51:765–778.  https://doi.org/10.1016/j.coastaleng.2004.07.008 CrossRefGoogle Scholar
  17. Hofstede JLA (2002) Morphologic responses of Wadden Sea tidal basins to a rise in tidal water levels and tidal range. Z Geomorph NF 46:93–108CrossRefGoogle Scholar
  18. Hofstede JLA, Becherer J, Burchard H (2016) Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise? J Coast Conserv 22:71–78.  https://doi.org/10.1007/s11852-016-0469-1 CrossRefGoogle Scholar
  19. Hunt S, Bryan KR, Mullarney JC (2015) The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries. Geomorphology 228:158–174.  https://doi.org/10.1016/j.geomorph.2014.09.001 CrossRefGoogle Scholar
  20. Kösters F, Winter C (2014) Exploring German Bight coastal morphodynamics based on modelled bed shear stress. Geo-Marine Lett 34:21–36.  https://doi.org/10.1007/s00367-013-0346-y CrossRefGoogle Scholar
  21. Le Hir P, Roberts W, Cazaillet O et al (2000) Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–1459CrossRefGoogle Scholar
  22. Lotze HK, Reise K, Worm B, van Beusekom J, Busch M, Ehlers A, Heinrich D, Hoffmann RC, Holm P, Jensen C, Knottnerus OS, Langhanki N, Prummel W, Vollmer M, Wolff WJ (2005) Human transformations of the Wadden Sea ecosystem through time: a synthesis. Helgol Mar Res 59:84–95.  https://doi.org/10.1007/s10152-004-0209-z CrossRefGoogle Scholar
  23. Milbradt P, Valerius J, Zeiler M (2015) Das Funktionale Bodenmodell: Aufbereitung einer konsistenten Datenbasis für die Morphologie und Sedimentologie. Die Küste, Arch Res Technol North Sea Balt Coast 83:19–38Google Scholar
  24. Papula L (2008) Mathematik für Ingenieure und Naturwissenschaftler, Band 3. Vieweg + Teubner VerlagGoogle Scholar
  25. Pye K, Blott SJ (2014) The geomorphology of UK estuaries: the role of geological controls, antecedent conditions and human activities. Estuar Coast Shelf Sci 150:196–214.  https://doi.org/10.1016/j.ecss.2014.05.014 CrossRefGoogle Scholar
  26. Reise K (2005) Coast of change: habitat loss and transformations in the Wadden Sea. Helgol Mar Res 59:9–21.  https://doi.org/10.1007/s10152-004-0202-6 CrossRefGoogle Scholar
  27. Schückel U, Kröncke I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuar Coast Shelf Sci 117:210–218.  https://doi.org/10.1016/j.ecss.2012.11.008 CrossRefGoogle Scholar
  28. Valerius J, Feldmann J, van Zoest M, et al (2013a) Documentation of morphological products from the AufMod project Functional Seabed Model, data format: Text files (CSV, XYZ). Federal Maritime and Hydrographic Agency (BSH) and smile consult GmbH. Unpublished reportGoogle Scholar
  29. Valerius J, Feldmann J, van Zoest M, et al (2013b) Documentation of sedimentological products from the AufMod project Functional Seabed Model, data format: Text files (CSV, XYZ). Federal Maritime and Hydrographic Agency (BSH) and smile consult GmbH. Unpublished reportGoogle Scholar
  30. Van Dijk T, Kleuskens MHP, Dorst LL, et al (2012) Quantified and applied sea-bed dynamics of the Netherlands Continental Shelf and the Wadden Sea. In: Jubilee conference proceedings, NCK-days 2012: crossing borders in coastal research, Enschede, Nederland, 13–16 maart 2012. pp 223–227Google Scholar
  31. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth-Sci Rev 124:51–67.  https://doi.org/10.1016/j.earscirev.2013.05.003 CrossRefGoogle Scholar
  32. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, de Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57.  https://doi.org/10.1016/j.ocecoaman.2011.12.022 CrossRefGoogle Scholar
  33. Wang ZB, Vroom J, Van Prooijen BC et al (2013) Movement of tidal watersheds in the Wadden Sea and its consequences on the morphological development. Int J Sediment Res 28:162–171.  https://doi.org/10.1016/S1001-6279(13)60028-1 CrossRefGoogle Scholar
  34. Winter C (2011) Macro scale morphodynamics of the German North Sea coast. J Coast Res SI 64:706–710Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MARUM - Center for Marine Environmental SciencesUniversity of BremenBremenGermany
  2. 2.Institute of GeosciencesChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations