Ocean Dynamics

, Volume 68, Issue 4–5, pp 589–602 | Cite as

Observation and numerical modeling of tidal dune dynamics

Article
Part of the following topical collections:
  1. Topical Collection on the 8th International conference on Coastal Dynamics, Helsingør, Denmark, 12-16 June 2017

Abstract

Tidal sand dune dynamics is observed for two tidal cycles in the Arcachon tidal inlet, southwest France. An array of instruments is deployed to measure bathymetric and current variations along dune profiles. Based on the measurements, dune crest horizontal and vertical displacements are quantified and show important dynamics in phase with tidal currents. We observed superimposed ripples on the dune stoss side and front, migrating and changing polarity as tidal currents reverse. A 2D RANS numerical model is used to simulate the morphodynamic evolution of a flat non-cohesive sand bed submitted to a tidal current. The model reproduces the bed evolution until a field of sand bedforms is obtained that are comparable with observed superimposed ripples in terms of geometrical dimensions and dynamics. The model is then applied to simulate the dynamics of a field of large sand dunes of similar size as the dunes observed in situ. In both cases, simulation results compare well with measurements qualitatively and quantitatively. This research allows for a better understanding of tidal sand dune and superimposed ripple morphodynamics and opens new perspectives for the use of numerical models to predict their evolution.

Keywords

Dunes Ripples Sediment transport Morphodynamics Measurements Tide Numerical modeling 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers and the Ocean Dynamics Editor for their constructive comments that contributed to improve the manuscript.

References

  1. Andersen KH (1999). The dynamics of ripples beneath surface waves and topics in shell models of turbulence, Ph.D. dissertation, Det Naturvidenskabelige Fakultet Københavns UniversitetGoogle Scholar
  2. Barrie JV, Hill PR, Conway KW, Iwanowska K, Picard K (2005) Georgia basin: seabed features and marine geohazards. Geosci Can 32:145–156Google Scholar
  3. Baas JH (1994) A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41:185–209CrossRefGoogle Scholar
  4. Baas JH (1999) An empirical model for the development and equilibrium morphology of current ripples in fine sand. Sedimentology 46:123–138CrossRefGoogle Scholar
  5. Barnard PL, Hanes DM, Rubin DM, Kvitek RG (2006) Giant sand waves at the mouth of San Francisco Bay. Eos, Transactions American Geophysical Union 87(29):285CrossRefGoogle Scholar
  6. Barnard PL, Erikson LH, Rubin DM, Dartnell P, Kvitek RG (2012) Analyzing bedforms mapped using multibeam sonar to determine regional bedload sediment transport patterns in the San Francisco bay coastal system. Mar Geol 345:72–95.  https://doi.org/10.1016/j.margeo.2012.10.011 CrossRefGoogle Scholar
  7. Barrie JV, Conway KW (2014) Seabed characterization for the development of marine renewable energy on the Pacific margin of Canada. Continental Shelf Research 83:45–52CrossRefGoogle Scholar
  8. Butel R, Dupuis H, Bonneton P (2002) Spatial variability of wave conditions on the French Atlantic coast using in situ data. J Coast Res Spec Issue 36:93–108Google Scholar
  9. Belderson RH, Johnson MA, Kenyon NH (1982) Bedforms. Chapman and Hall, London, pp 27–57Google Scholar
  10. Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res 110:F04S02.  https://doi.org/10.1029/2004JF000218 CrossRefGoogle Scholar
  11. Charru F (2006) Selection of the ripple length on a granular bed sheared by a liquid flow. Physics of Fluids 18 (12):121508CrossRefGoogle Scholar
  12. Charru F (2013) Sand ripples and dunes. Annu Rev Fluid Mech 45:469–493.  https://doi.org/10.1146/annurev-fluid-011212-140806 CrossRefGoogle Scholar
  13. Coleman SE, Melville BW (1994) Bed-form development. J Hydraul Eng 120:544–560CrossRefGoogle Scholar
  14. Coleman SE, Melville BW (1996) initiation of bed forms on a flat sand bed. J Hydraul Eng 122:301–310CrossRefGoogle Scholar
  15. Doré A, Bonneton P, Marieu V, Garlan T (2014) Modélisation de l’évolution morphodynamique des dunes sous-marines. Proceedings des XIII èmes JNGCGC, Dunkerque 2–4 Juillet 2014, 289–296  https://doi.org/10.5150/jngcgc2014.032.
  16. Doré A (2015) Modélisation de l’évolution morhodynamique des dunes sous-marines, Ph.D. dissertation, Ecole Doctorale Sciences de l'Environnement de l'université de BordeauxGoogle Scholar
  17. Doré A, Bonneton P, Marieu V, Garlan T (2016) Numerical modeling of subaqueous sand dunes morphodynamics. J Geophys Res Earth Surf 121:565–587.  https://doi.org/10.1002/2015JF003689 CrossRefGoogle Scholar
  18. Dreano J, Valance A, Lague D, Cassar C (2010) Experimental study on transient and steady-state dynamics of bedforms in supply limited configuration. Earth Surf Process Landf 35:1730–1743.  https://doi.org/10.1002/esp.2085 CrossRefGoogle Scholar
  19. Engelund F (1966) Hydraulic resistance of alluvial streams. J Hydraul Div HY4:287–297Google Scholar
  20. Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Nord Hydrol 7:293–306Google Scholar
  21. Ernstsen VB, Noormets R, Winter C, Hebbeln D, Bartholoma A, Flemming BW, Bartholdy J (2006) Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Mar Lett 26:151–163.  https://doi.org/10.1007/s00367-006-0025-3 CrossRefGoogle Scholar
  22. Fourrière A, Claudin P, Andreotti B (2010) Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J Fluid Mech 649:287–328.  https://doi.org/10.1017/S0022112009993466 CrossRefGoogle Scholar
  23. Fredsøe J (1982) Shape and dimensions of stationary dunes in rivers. J Hydraul Div 8:932–947.  https://doi.org/10.1017/S0022112074001960 Google Scholar
  24. Fredsøe J, Deigaard R (1992) Mechanics of coastal sediment transport. World Scientific, SingaporeGoogle Scholar
  25. Knaapen MAF, Van Bergen Henegouw CN, Hu YY (2002) Quantifying bedform migration using multi-beam sonar. Geo-Mar Lett 46Google Scholar
  26. Kostaschuk R, Best J (2005) Response of sand dunes to variations in tidal flow: Fraser estuary, Canada. J Geophys Res 110:F04S04.  https://doi.org/10.1029/2004JF000176 CrossRefGoogle Scholar
  27. Langhorne DN (1982) A study of the dynamics of a marine sandwave. Sedimentology 29:571–594CrossRefGoogle Scholar
  28. Langlois V, Valance A (2007) Initiation and evolution of current ripples on a flat sand bed under turbulent water flow. Eur Phys J E 22:201–208CrossRefGoogle Scholar
  29. Lefebvre A, Ernstsen VB, Winter C (2013) Estimation of roughness length sand flow separation over compound bedforms in a natural tidal inlet. Cont Shelf Res 61-62:98–111.  https://doi.org/10.1016/j.csr.2013.04.030 CrossRefGoogle Scholar
  30. Li MZ, Shaw JS, Todd BJ, Kostylev VE, Wu Y (2014) Sediment transport and development of banner banks and sandwaves in an extreme tidal system: upper bay of Fundy, Canada. Cont Shelf Res 83:86–107.  https://doi.org/10.1016/j.csr.2013.08.007 CrossRefGoogle Scholar
  31. Marieu V, Bonneton P, Foster DL, Arduhin F (2008) Modeling of vortex ripple morphodynamics. J Geophys Res 113:C09007CrossRefGoogle Scholar
  32. Meyer-Peter E, Müller R (1948) Formulas for bed-load transport, Proceeding of the International Association of Hydraulic Research. 3rd Annual Conference, Stockholm, pp 39–64Google Scholar
  33. Morelissen R, Hulscher SJMH, Knaapen MAF, Nemeth AA, Bijker R (2003) Mathematical modelling of sand wave migration and the interaction with pipelines. Coast Eng 48:197–209.  https://doi.org/10.1016/S0378-3839(03)00028-0 CrossRefGoogle Scholar
  34. Nabi M, Vriend HJD, Mosselman E, Sloff CJ, Shimizu Y (2013) Detailed simulation of morphodynamics: 3. ripples and dunes. Water Resour Res 49:1–14.  https://doi.org/10.1002/wrcr.20457 CrossRefGoogle Scholar
  35. Niemann SL, Fredsoe J, Jacobsen NG (2011) Sand dunes in steady flow at low Froude numbers: dune height evolution and flow resistance. J Hydraul Eng 137:5–14CrossRefGoogle Scholar
  36. Paarlberg AJ, Dohmen-Janssen CM, Hulscher SJMH, Termes P (2009) Modeling river dune evolution using a parameterization of flow separation. Journal of Geophysical Research 114(F1).  https://doi.org/10.1029/2007JF000910
  37. Pedreros R, Lecacheux S, Sottolichio A, Romieu E, Idier D, Salles P, Delattre M (2008) Caractérisation des vagues dans les passes du bassin d’Arcachon, Proceedings des Xèmes JNGCGC, Sophia Antipolis 14–16 Octobre 2008, 273–282.  https://doi.org/10.5150/jngcgc.2008.026-P
  38. Perillo MM, Best JL, Yokokawa M, Sekiguchi T, Takagawa T, Garcia MH (2014) A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined-flows. Sedimentology 61:2063–2085.  https://doi.org/10.1111/sed.12129 CrossRefGoogle Scholar
  39. Raudkivi AJ (1997) Ripples on stream bed. J Hydraul Eng 123:58–64CrossRefGoogle Scholar
  40. Rubin DM, McCulloch DS (1980) Single and superimposed bedforms: a synthesis of San Francisco bay and flume observations. Sediment Geol 26:207–231CrossRefGoogle Scholar
  41. Thauront F (1995) Les transits sédimentaires subtidaux dans les passes internes du bassin d’Arcachon, Ph.D. dissertation, Université de Bordeaux 1Google Scholar
  42. Tjerry S, Fredsøe J (2005) Calculation of dune morphology. J Geophys Res 110:FO4013CrossRefGoogle Scholar
  43. Todd BJ, Shaw J, Li MZ, Kostylev VE, Wu Y (2014) Distribution of subtidal sedimentary bedforms in a macrotidal setting: The Bay of Fundy, Atlantic Canada. Cont Shelf Res 83:64–85CrossRefGoogle Scholar
  44. Valance A, Langlois V (2005) Ripple formation over a sand bed submitted to a laminar shear flow. The European Physical Journal B 43(2):283–294CrossRefGoogle Scholar
  45. Vantorre M, Lataire E, Candries M, van Doorn J, van Heel D (2013) An equivalent bottom for navigation above irregular bottoms, Van Lancker, V. and Garlan, T. (Eds), 2013. MARID 2013. Fourth International Conference on Marine and River Dune Dynamics, 301–308Google Scholar
  46. Whitehouse RJS, Damgaard JS, Langhorne N (2000) Sandwaves and seabed engineering: the application to submarine cables, Proceeding of Marine Sandwave Dynamics 2000, MARID, 227-234.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Danish Hydraulics InstituteHørsholmDenmark
  2. 2.Université de Bordeaux, CNRS; UMR 5805-EPOCTalenceFrance
  3. 3.SHOM; HOM/REC-CFuD/SédimentologieBrest Cedex 2France

Personalised recommendations