Advertisement

Powers of conjugacy classes in a finite group

  • Antonio Beltrán
  • Rachel Deborah Camina
  • María José FelipeEmail author
  • Carmen Melchor
Article
  • 21 Downloads

Abstract

The aim of this paper is to show how the number of conjugacy classes appearing in the product of classes affect the structure of a finite group. The aim of this paper was to show several results about solvability concerning the case in which the power of a conjugacy class is a union of one or two conjugacy classes. Moreover, we show that the above conditions can be determined through the character table of the group.

Keywords

Finite groups Conjugacy classes Solvability Power of conjugacy classes Characters 

Mathematics Subject Classification

20E45 20D15 20C20 

Notes

Acknowledgements

Part of this paper was written during the stay of C. Melchor at the University of Cambridge in autumn 2017, which was financially supported by the grant E-2017-02, Universitat Jaume I of Castellón. C. Melchor would like to thank R. Camina and the Department of Mathematics for their warm hospitality. A. Beltrán, M.J. Felipe and C. Melchor are supported by Proyecto PGC2018-096872-B-100, Ministerio de Ciencia, Innovación y Universidades.

References

  1. 1.
    Arad, Z., Fisman, E.: An analogy between products of two conjugacy classes and products of two irreducible characters in finite groups. Proc. Edinb. Math. Soc. 30, 7–22 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arad, Z., Herzog, M.: Products of conjugacy classes in groups, Lecture Notes in Mathematics, vol. 1112. Springer-Verlag, Berlin (1985)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beltrán, A., Felipe, M.J., Melchor, C.: Squares of real conjugacy classes in finite groups. Ann. Mat. Pura Appl. 197(2), 317–328 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beltrán, A., Felipe, M.J., Melchor, C.: Multiplying a conjugacy class by its inverse in a finite group. Israel J. Math. 227(2), 811–825 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    The GAP Group, GAP—Groups, Algorithms and Programming, Vers. 4.7.7; (2015). (http://www.gap-system.org)
  6. 6.
    Gorenstein, D.: Finite Groups. AMS Chelsea Publishing, Chelsea (1980)zbMATHGoogle Scholar
  7. 7.
    Guralnick, R.M., Malle, G.: Variations on the Baer–Suzuki theorem. Math. Z. 279, 981–1006 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guralnick, R.M., Robinson, G.R.: On extensions on the Baer–Suzuki theorem. Israel J. Math. 82, 281–297 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guralnick, R.M., Navarro, G.: Squaring a conjugacy class and cosets of normal subgroups. Proc. Am. Math. Soc. 144(5), 1939–1945 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huppert, B.: Character Theory of Finite Groups. Walter de Gruyter, Berlin, New York (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Isaacs, I.M.: Character Theory of Finite Groups. Academic Press Inc, New York (1976)zbMATHGoogle Scholar
  12. 12.
    Moori, J., Tong-Viet, H.P.: Products of conjugacy classes in simple groups. Quaest. Math. 34(4), 433–439 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zisser, I.: The covering numbers of the sporadic simple groups. Israel J. Math. 67(2), 217–224 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Antonio Beltrán
    • 1
  • Rachel Deborah Camina
    • 2
  • María José Felipe
    • 3
    Email author
  • Carmen Melchor
    • 1
  1. 1.Departamento de MatemáticasUniversidad Jaume ICastellónSpain
  2. 2.Department of Pure Mathematics and Mathematical Statistics, Fitzwilliam CollegeUniversity of CambridgeCambridgeUK
  3. 3.Instituto Universitario de Matemática Pura y AplicadaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations