Advertisement

Bounds on the dimension of the Brill–Noether schemes of rank two bundles

  • Ali BajravaniEmail author
Article

Abstract

The aim of this note is to find upper bounds on the dimension of Brill–Noether locus inside the moduli space of rank two vector bundles on a smooth algebraic curve. We deduce some consequences of these bounds.

Keywords

Brill–Noether theory Petri map Vector bundles 

Mathematics Subject Classification

14H51 14H60 

Notes

Acknowledgements

The author wishes to thank F. Flamini, P. Newstead, and M. Teixidor for their valuable hints and for sharing their knowledge. I specially thank G. H. Hitching whose careful reading and comments changed the previous manuscript of this paper, considerably. Teixidor supported me by sending a draft of the unpublished paper [6] at the right time; to her, I express my double gratitude. I also thank the anonymous referee for his/her very useful comments on the paper.

References

  1. 1.
    Atiyah, M.: Vector bundles over an elliptic curve. Proc. Lond. Math. Soc. (3) 7, 414–452 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bajravani, A.: Martens–Mummford theorems for Brill–Noether schemes arising from very ample line bundles. Arc. Math. 105, 229–237 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bajravani, A.: Remarks on the geometry of secant loci. Arc. Math. 108, 373–381 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bajravani, A.: A note on the tangent cones of the scheme of Secant Loci. Rendiconti del Circolo Matematico di Palermo Series 2 67, 599–608 (2018)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Choi, Y., Flamini, F., Kim, S.: Brill–Noether theory of rank two vector bundles on a general \(\nu \)-Gonal curve. Proc. AMS 146, 3233–3248 (2018)CrossRefzbMATHGoogle Scholar
  6. 6.
    Feinberg, B.: On the Dimension and Irreducibility of Brill–Noether Loci. Unpublished paperGoogle Scholar
  7. 7.
    Grzegorczyk, I., Teixidor, M.: Brill-Noether theory for stable vector bundles. In: Bradlow, S., Brambila-Paz, L., Garcia-Prada, O., Ramanan, S. (eds.) Moduli Spaces of Vector Bundles. LMS Lecture Note Series 359, pp. 29–50. Cambridge University Press (2009)Google Scholar
  8. 8.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics 52. Springer, New York (1977)Google Scholar
  9. 9.
    Re, R.: Multiplication of sections and Clifford bounds for stable vector bundles on curves. Commun. Algebra 26, 1931–1944 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Teixidor, M.: Brill–Noether theory for vector bundles of rank 2. Tohuku Math. J. 43, 123–126 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Teixidor i Bigas, M.: On the Gieseker-Petri map for rank 2 vector bundles. Manuscr. Math. 75(4), 375–382 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Teixidor, M.: For which Jacobi Varieties is Sing \(\varTheta \) reducible? J. Reine Angew. Math. 354, 141–149 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIslamic Republic of Iran

Personalised recommendations