Stable hypersurfaces in the complex projective space

  • Erika Battaglia
  • Roberto MontiEmail author
  • Alberto Righini


We characterize the sphere with radius \(\tan ^2 r = 2n+1\) in the complex projective space \({{\mathbf {C}}}P^{n}\) as the unique stable hypersurface subject to certain bounds on the curvatures.


Stable hypersurfaces Complex projective space Constant mean curvature hypersurfaces 

Mathematics Subject Classification

49Q10 53C42 



  1. 1.
    Barbosa, J.L., do Carmo, M.: Stability of hypersurfaces with constant mean curvature. Math. Z. 185(3), 339–353 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197(1), 123–138 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cecil, T.E., Ryan, P.J.: Focal sets and real hypersurfaces in complex projective space. Trans. Am. Math. Soc. 269(2), 481–499 (1982)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Maeda, Y.: On real hypersurfaces of a complex projective space. J. Math. Soc. Jpn. 28(3), 529–540 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Nomizu, K.: Some results in E. Cartan’s theory of isoparametric families of hypersurfaces. Bull. Am. Math. Soc. 79, 1184–1188 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ros, A.: Spectral geometry of CR-minimal submanifolds in the complex projective space. Kodai Math. J. 6(1), 88–99 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ros, A.: On spectral geometry of Kähler submanifolds. J. Math. Soc. Jpn. 36(3), 433–448 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tai, S.-S.: Minimum imbeddings of compact symmetric spaces of rank one. J. Differ. Geom. 2, 55–66 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. J. Math. Soc. Jpn. 27, 43–53 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Takagi, R.: Real hypersurfaces in a complex projective space with constant principal curvatures. II. J. Math. Soc. Jpn. 27(4), 507–516 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Matematica “Tullio Levi-Civita”Università di PadovaPadovaItaly

Personalised recommendations