Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 6, pp 2207–2225 | Cite as

Gradient estimates on connected graphs with the \(CD\psi (m,K)\) condition

  • Ying Lv
  • LinFeng WangEmail author
Article
  • 57 Downloads

Abstract

Let G(VE) be a finite or infinite (locally finite) graph with the \(CD\psi (m,-K)\) condition for some constants \(m>0,K\ge 0\), and some \(C^1\), concave function \(\psi : (0,+\infty )\rightarrow {\mathbf {R}}\). In this paper, we firstly prove that if \(u:V\rightarrow (0,+\infty )\) is a solution to the equation \(\triangle _{\mu } u=-\lambda u\), then \(\lambda \le \frac{mK}{4\psi '(1)}\), and u satisfies an elliptic gradient estimate. We can recover a result derived in Wang and Zhou (Archiv der Mathematik 109:383–391, 2017) if we choose \(\psi =\sqrt{\cdot }\). Secondly, we establish a general gradient estimate for the linear heat equation \((\triangle _{\mu }-\partial _t) u=0\); this estimate includes the Davies, Hamilton, Bakry–Qian and Li–Xu’s estimates; these four type estimates had been established on the manifold. We can derive gradient estimates on a finite graph with the same types as in the manifold case if we choose \(\psi =\ln {(\cdot )}\). As by-products, we get corresponding Harnack inequalities.

Keywords

Graph \(CD\psi (m{, }K)\) condition Gradient estimate Harnack inequality 

Mathematics Subject Classification

53C21 05C99 

Notes

References

  1. 1.
    Bakry, D., Qian, Z.M.: Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Mat. Iberoam. 15(1), 143–179 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauer, F., Horn, P., Lin, Y., Lippner, G., Mangoubi, D., Yau, S.T.: Li–Yau inequality on graphs. J. Differ. Geom. 99, 359–405 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cheng, S.Y.: Eigenvalue comparison theorems and its geometric application. Math. Z. 143, 289–297 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chow, B., Chu, S.C., Glickenstein, D., Guenther, C., Isenberg, J., Iney, T., Knopf, D., Lu, P., Luo, F., Ni, L.: The Ricci flow: techniques and applications. Part I. Geometric aspects, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, (2007)Google Scholar
  5. 5.
    Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  6. 6.
    Hamilton, R.: The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hamilton, R.: A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1(1), 113–125 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, J.F., Xu, X.J.: Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation. Adv. Math. 226(5), 4456–4491 (2011)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, P.: Harmonic functions and applications to complete manifolds, Preprint (2004)Google Scholar
  10. 10.
    Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Münch, F.: Li–Yau inequality on finite graphs via non-linear curvature dimension conditions, arxiv:1412.3340v1
  12. 12.
    Münch, F.: Remarks on curvature dimension conditions on graphs. Calc. Var. Partial Differ. Equ. 56, 11 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, L.F.: The upper bound of the \(L_{\mu }^2\) spectrum. Ann. Glob. Anal. Geom. 37(4), 393–402 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, L.F., Zhang, Z.Y.: Gradient estimates for the heat equation on graphs, (to appear in Commun. Anal. Geom.)Google Scholar
  15. 15.
    Wang, L.F., Zhou, Y.J.: A gradient estimate on graphs with the \(CDE(m, K)\)-condition. Arch. Math. 109, 383–391 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, L.F., Zhou, Y.J.: Eigenvalue estimates on a connected finite graph. Proc. Am. Math. Soc. 146(11), 4855–4866 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Yau, S.T.: Harmonic functions on complete Riemannian manifold. Commun. Pure Appl. Math. 28, 201–208 (1975)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceNantong UniversityNantongChina

Personalised recommendations