Advertisement

Locally periodic unfolding operator for highly oscillating rough domains

  • S. AiyappanEmail author
  • A. K. Nandakumaran
  • Ravi Prakash
Article
  • 24 Downloads

Abstract

This article aims to understand the locally periodic oscillating domain via unfolding operators. A three-dimensional rough domain \(\Omega _\varepsilon \), \(\varepsilon >0\) a small parameter, has been considered for the study where the boundary is rapidly oscillating with high amplitude. Though there are some articles with locally periodic boundary oscillations with small amplitude we do not see any literature with high-amplitude (O(1)) locally periodic oscillating domains. In this article, we attempt to study a problem in locally periodic rough domains with an eye towards the general oscillating domains without periodicity. With our experience of handling such domains and unfolding operators, we develop locally periodic unfolding operators to study our problems. We consider a nonlinear inhomogeneous Robin boundary value problem posed on this domain to demonstrate the utility of the newly defined operator.

Keywords

Asymptotic analysis Unfolding operator Locally periodic oscillating boundary domain Homogenization 

Mathematics Subject Classification

80M35 80M40 35B27 

Notes

Acknowledgements

We thank the referee for their meticulous reading of the article and their comments which have improved the paper substantially. The first and second authors would like to thank Department of Science and Technology (DST), Government of India, as the work was partially supported by the Project No. EMR/2016/005018 dtd 8.8.17. The third author wishes to thank CONICYT for the financial support through FONDECYT INICIACIÓN NO. 11180551. He would also acknowledge the support from the Facultad de Ciencias Fisicas y Matemáticas, Universidad de Concepción (Chile).

References

  1. 1.
    Aiyappan, S., Nandakumaran, A.K., Prakash, R.: Semi-linear optimal control problem on a smooth oscillating domain. Commun. Contemp. Math. (2019).  https://doi.org/10.1142/S0219199719500299 Google Scholar
  2. 2.
    Aiyappan, S., Nandakumaran, A.K., Prakash, R.: Generalization of unfolding operator for highly oscillating smooth boundary domains and homogenization. Calc. Var. Partial Differ. Equ. 57(3), 86 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aiyappan, S., Nandakumaran, A.K.: Optimal control problem in a domain with branched structure and homogenization. Math. Methods Appl. Sci. 40(8), 3173–3189 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aiyappan, S.: Sardar, B.C.: Biharmonic equation in a highly oscillating domain and homogenization of an associated control problem. Appl. Anal 23, 1–19 (2018)Google Scholar
  5. 5.
    Amirat, Y., Bodart, O., De Maio, U., Gaudiello, A.: Asymptotic approximation of the solution of the Laplace equation in a domain with highly oscillating boundary. SIAM J. Math. Anal. 35(6), 1598–1616 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arrieta, J.M., Bruschi, S.M.: Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lipschitz deformation. Math. Models Methods Appl. Sci. 17(10), 1555–1585 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arrieta, J.M., Pereira, M.C.: Homogenization in a thin domain with an oscillatory boundary. J. Math. Pures Appl. (9) 96(1), 29–57 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Arrieta, J.M., Villanueva-Pesqueira, M.: Thin domains with doubly oscillatory boundary. Math. Methods Appl. Sci 37(2), 158–166 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Arrieta, J.M., Villanueva-Pesqueira, M.: Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary. SIAM J. Math. Anal. 48(3), 1634–1671 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Blanchard, D., Carbone, L., Gaudiello, A.: Homogenization of a monotone problem in a domain with oscillating boundary. ESAIM Math. Model. Numer. Anal. 33(5), 1057–1070 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Blanchard, D., Gaudiello, A., Griso, G.: Junction of a periodic family of elastic rods with a 3d plate. Part I. Journal de mathématiques pures et appliquées 88(1), 1–33 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Blanchard, D., Gaudiello, A., Griso, G.: Junction of a periodic family of elastic rods with a thin plate. Part II. Journal de mathématiques pures et appliquées 88(2), 149–190 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bourgeat, A., Paloka, E.M., Mikelić, A.: Effective fluid flow in a porous medium containing a thin fissure. Asymptot. Anal. 11(3), 241–262 (1995)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Braides, A., Piat, C.: Homogenization of networks in domains with oscillating boundaries. Appl. Anal. 98, 45–63 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chechkin, G.A., Friedman, A., Piatnitski, A.L.: The boundary-value problem in domains with very rapidly oscillating boundary. J. Math. Anal. Appl. 231(1), 213–234 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems, Series in Contemporary Mathematics 03. Springer, Berlin (2019)zbMATHGoogle Scholar
  17. 17.
    Damlamian, A., Pettersson, K.: Homogenization of oscillating boundaries. Discrete Contin. Dyn. Syst. 23(1–2), 197–210 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gaudiello, A., Guibé, O., Murat, F.: Homogenization of the brush problem with a source term in \(L^1\). Arch. Ration. Mech. Anal. 225(1), 1–64 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gaudiello, A., Mel’nyk, T.A.: Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary. J. Differ. Equ. 265, 5419–5454 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Krantz, S.G., Parks, H.R.: Geometric Integration Theory, Cornerstones. Birkhäuser Boston Inc., Boston (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Mahadevan, R., Nandakumaran, A.K., Prakash, R: Homogenization of an elliptic equation in a domain with oscillating boundary with non-homogeneous non-linear boundary conditions, Appl. Math. Optim. (2018).  https://doi.org/10.1007/s00245-018-9499-4
  22. 22.
    Mel’nyk, T.A.: Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type 3:2:1. Math. Methods Appl. Sci. 31(9), 1005–1027 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mel’nyk, T.A.: Asymptotic approximation for the solution to a semi-linear parabolic problem in a thick junction with the branched structure. J. Math. Anal. Appl. 424(2), 1237–1260 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nandakumaran, A.K., Prakash, R.: Asymptotic analysis and error estimates for an optimal control problem with oscillating boundaries. Annali dell’Universita di Ferrara 58(1), 143–166 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nandakumaran, A.K., Prakash, R., Sardar, B.C.: Homogenization of an optimal control via unfolding method. SIAM J. Control Optim. 53(5), 3245–3269 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Nandakumaran, A.K., Prakash, R., Sardar, B.C.: Asymptotic analysis of Neumann periodic optimal boundary control problem. Math. Methods Appl. Sci. 39(15), 4354–4374 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pankratova, I., Pettersson, K.: Spectral asymptotics for an elliptic operator in a locally periodic perforated domain. Appl. Anal. 94(6), 1207–1234 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pettersson, I.: Two-scale convergence in thin domains with locally periodic rapidly oscillating boundary. Differ. Equ. Appl. 9(3), 393–412 (2017)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ptashnyk, M.: Locally periodic unfolding method and two-scale convergence on surfaces of locally periodic microstructures. Multiscale Model. Simul. 13(3), 1061–1105 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, vol. 49. American Mathematical Society, Providence (2013)Google Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • S. Aiyappan
    • 1
    Email author
  • A. K. Nandakumaran
    • 1
  • Ravi Prakash
    • 2
  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Mathematics, Faculty of Physical Sciences and MathematicsUniversity of ConcepciónConcepciónChile

Personalised recommendations