Advertisement

Annali di Matematica Pura ed Applicata (1923 -)

, Volume 198, Issue 5, pp 1639–1650 | Cite as

The biharmonic homotopy problem for unit vector fields on 2-tori

  • E. LoubeauEmail author
  • M. Markellos
Article
  • 32 Downloads

Abstract

The bienergy of smooth maps between Riemannian manifolds, when restricted to unit vector fields, yields two different variational problems depending on whether one takes the full functional or just the vertical contribution. Their critical points, called biharmonic unit vector fields and biharmonic unit sections, form different sets. Working with surfaces, we first obtain general characterizations of biharmonic unit vector fields and biharmonic unit sections under conformal change of the metric. In the case of a two-dimensional torus, this leads to a proof that biharmonic unit sections are always harmonic and a general existence theorem, in each homotopy class, for biharmonic unit vector fields.

Keywords

Bienergy functional Biharmonic unit vector fields Biharmonic unit sections 2-Torus 

Mathematics Subject Classification

Primary 58E20 Secondary 53C20 

Notes

References

  1. 1.
    Baird, P., Wood, J.C.: Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, vol. 29. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  2. 2.
    Besse, A.: Einstein Manifolds. Springer, Berlin (1987)CrossRefGoogle Scholar
  3. 3.
    Dragomir, S., Perrone, D.: Harmonic Vector Fields: Variational Principles and Differential Geometry. Elsevier, Amsterdam (2011)zbMATHGoogle Scholar
  4. 4.
    Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gil-Medrano, O., González-Dávila, J.C., Vanhecke, L.: Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds. Houston J. Math. 27(2), 377–409 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Markellos, M.K.: The biharmonicity of unit vector fields on the Poincaré half-space \(H^{n}\). In: Proceedings of the VIII International Colloquium on Differential Geometry, Santiago de Compostella, World Scientific, pp. 247–256 (2009)Google Scholar
  7. 7.
    Markellos, M., Urakawa, H.: The bienergy of unit vector fields. Ann. Glob. Anal. Geom. 46, 431–457 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Markellos, M., Urakawa, H.: The biharmonicity of sections of the tangent bundle. Monatsh. Math. 178, 389–404 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Milnor, J.: Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ou, Y.L., Wang, Z.P.: Constant mean curvature and totally umbilical biharmonic surfaces in 3-dimensional geometries. J. Geom. Phys. 61, 1845–1853 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wiegmink, G.: Total bending of vector fields on Riemannian manifolds. Math. Ann. 303, 325–344 (1995)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wood, C.M.: On the energy of a unit vector field. Geom. Dedicata 64, 319–330 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Mathématiques, LMBA, UMR 6205Université de Bretagne OccidentaleBrest Cedex 3France
  2. 2.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus

Personalised recommendations